Yuguang Mao , Zhenguo Shi , Xiang Hu , Amani Khaskhoussi , Caijun Shi
{"title":"Chloride binding of cement paste containing wet carbonated recycled concrete fines","authors":"Yuguang Mao , Zhenguo Shi , Xiang Hu , Amani Khaskhoussi , Caijun Shi","doi":"10.1016/j.cemconres.2025.107823","DOIUrl":null,"url":null,"abstract":"<div><div>The overall effect of wet carbonation recycled concrete fines (RCF) on the chloride binding capacity of cement paste was quantitatively decoupled into the effect of paste pH reduction, and the contribution of each component (uncarbonated phase, CaCO<sub>3</sub>, silica gel) in the wet carbonated RCF. Results indicate that incorporating wet carbonated RCF decreases both the chemical and physical chloride binding capacity of the cement paste. The extent of the decrease in the former is significantly lower than that of the latter. The main factors determining the extent of the decrease in chloride binding capacity are the reduction of paste pH and the effect of silica gel. These two effects become significant with increasing carbonation degree of RCF, mainly with increasing carbonation time. Increasing the CO₂ flow rate during RCF wet carbonation effectively mitigates the negative impact on chloride binding capacity due to the increased aluminum content in the produced silica gel.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"191 ","pages":"Article 107823"},"PeriodicalIF":10.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625000420","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The overall effect of wet carbonation recycled concrete fines (RCF) on the chloride binding capacity of cement paste was quantitatively decoupled into the effect of paste pH reduction, and the contribution of each component (uncarbonated phase, CaCO3, silica gel) in the wet carbonated RCF. Results indicate that incorporating wet carbonated RCF decreases both the chemical and physical chloride binding capacity of the cement paste. The extent of the decrease in the former is significantly lower than that of the latter. The main factors determining the extent of the decrease in chloride binding capacity are the reduction of paste pH and the effect of silica gel. These two effects become significant with increasing carbonation degree of RCF, mainly with increasing carbonation time. Increasing the CO₂ flow rate during RCF wet carbonation effectively mitigates the negative impact on chloride binding capacity due to the increased aluminum content in the produced silica gel.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.