Birte Riechers , Amlan Das , Reza Rashidi , Eric Dufresne , Robert Maaß
{"title":"Metallic glasses: Elastically stiff yet flowing at any stress","authors":"Birte Riechers , Amlan Das , Reza Rashidi , Eric Dufresne , Robert Maaß","doi":"10.1016/j.mattod.2024.11.015","DOIUrl":null,"url":null,"abstract":"<div><div>Crystalline solids have a minimum stress needed to displace atoms or to move defects. This stress defines the true elastic limit and is generally a sizeable share of the macroscopic yield stress. Here we demonstrate that a metallic glass, an amorphous solid with a yield stress in the giga-pascal regime, lacks such a true microscopic elastic limit. Leveraging in-situ coherent x-ray scattering, we uncover a strongly accelerated atomic-scale transport upon the application of a stress as small as 0.005 times the yield stress. With increasing stress levels, the distribution of structural relaxation times changes from compressed exponential to simple exponential form, revealing a stress–temperature equivalence in the time-scale domain. These findings strongly promote a microstructurally heterogeneous picture of metallic glasses, in which a part of the amorphous microstructure controls macroscopic yielding whereas another part admits microplastic flow at any stress.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"82 ","pages":"Pages 92-98"},"PeriodicalIF":21.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002736","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Crystalline solids have a minimum stress needed to displace atoms or to move defects. This stress defines the true elastic limit and is generally a sizeable share of the macroscopic yield stress. Here we demonstrate that a metallic glass, an amorphous solid with a yield stress in the giga-pascal regime, lacks such a true microscopic elastic limit. Leveraging in-situ coherent x-ray scattering, we uncover a strongly accelerated atomic-scale transport upon the application of a stress as small as 0.005 times the yield stress. With increasing stress levels, the distribution of structural relaxation times changes from compressed exponential to simple exponential form, revealing a stress–temperature equivalence in the time-scale domain. These findings strongly promote a microstructurally heterogeneous picture of metallic glasses, in which a part of the amorphous microstructure controls macroscopic yielding whereas another part admits microplastic flow at any stress.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.