Construction of an interpenetrating polymer network in situ to develop multifunctional cellulose nanofiber-enhanced films with superior mechanical performances

IF 8.5 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jiao Feng , Yangbing Wen , Wenmin Yang , Xianghua Hu , Yecheng Xu , Zhen Fang
{"title":"Construction of an interpenetrating polymer network in situ to develop multifunctional cellulose nanofiber-enhanced films with superior mechanical performances","authors":"Jiao Feng ,&nbsp;Yangbing Wen ,&nbsp;Wenmin Yang ,&nbsp;Xianghua Hu ,&nbsp;Yecheng Xu ,&nbsp;Zhen Fang","doi":"10.1016/j.ijbiomac.2025.140857","DOIUrl":null,"url":null,"abstract":"<div><div>The development of biodegradable films with enhanced mechanical performance is of great importance for environmental concerns. Inspired by the unique multiple hydrogen bonding of spider silk, in this work, we developed a tough polyvinyl alcohol (PVA)-based, TEMPO-oxidized cellulose nanofibers (TOCNF)-enhanced film with outstanding stretchability, mechanical strength, fatigue resistance, and biodegradability by constructing an interpenetrating polymer network (IPN) with abundant hydrogen bonds via a combination of in situ radical-crosslinking and solvent casting method. The film incorporated 1 wt% of TOCNF, namely P/A-TCF1, exhibits excellent biodegradability, outstanding elongation (470 %), significant toughness (143 MJ/m<sup>3</sup>), healable efficiency (90 %) and high tensile strength (45 MPa), surpassing the performance of a vast of commercially-available films. Importantly, the P/A-TCF1 film can withstand 5000 actual 180° folds without causing any structural damage, and the tensile strength remains almost 90 % of its original value. This strategy provides a novel approach for exploring exceptional fold-resistant films.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"304 ","pages":"Article 140857"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025014060","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of biodegradable films with enhanced mechanical performance is of great importance for environmental concerns. Inspired by the unique multiple hydrogen bonding of spider silk, in this work, we developed a tough polyvinyl alcohol (PVA)-based, TEMPO-oxidized cellulose nanofibers (TOCNF)-enhanced film with outstanding stretchability, mechanical strength, fatigue resistance, and biodegradability by constructing an interpenetrating polymer network (IPN) with abundant hydrogen bonds via a combination of in situ radical-crosslinking and solvent casting method. The film incorporated 1 wt% of TOCNF, namely P/A-TCF1, exhibits excellent biodegradability, outstanding elongation (470 %), significant toughness (143 MJ/m3), healable efficiency (90 %) and high tensile strength (45 MPa), surpassing the performance of a vast of commercially-available films. Importantly, the P/A-TCF1 film can withstand 5000 actual 180° folds without causing any structural damage, and the tensile strength remains almost 90 % of its original value. This strategy provides a novel approach for exploring exceptional fold-resistant films.
原位构建互穿聚合物网络,开发具有优异机械性能的多功能纤维素纳米纤维增强膜
开发具有增强机械性能的生物可降解薄膜对环境问题具有重要意义。受蜘蛛丝独特的多重氢键的启发,本研究通过原位自由基交联和溶剂铸造相结合的方法,构建具有丰富氢键的互穿聚合物网络(IPN),开发了一种坚韧的聚乙烯醇(PVA)基、tempo氧化纤维素纳米纤维(TOCNF)增强膜,具有出色的拉伸性、机械强度、抗疲劳性和生物降解性。该薄膜含有1 wt%的TOCNF,即P/ a - tcf1,具有优异的生物可降解性,突出的伸长率(470%),显著的韧性(143 MJ/m3),可愈合效率(90%)和高拉伸强度(45 MPa),超过了大量商用薄膜的性能。重要的是,P/A-TCF1薄膜可以承受5000次实际180°折叠而不会造成任何结构损坏,抗拉强度保持在原始值的近90%。这种策略为探索特殊的抗折叠薄膜提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信