{"title":"Multi-agent simulation of policies driving CCS technology in the cement industry","authors":"Biying Yu , Jiahao Fu , Ying Dai","doi":"10.1016/j.enpol.2025.114527","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon capture and storage (CCS) technology has the potential to accelerate the cement industry's transition to low carbon, but it is still in the early demonstration stage. Strong policies are needed to promote its large-scale development. However, previous research was inadequate to identify the intertwined motivating factors behind the policy, which led to the policies being less effective. Therefore, this paper aims to explore the impact of policy on the diffusion of CCS in the cement industry by delving into the interaction mechanisms among agents, including the government, cement companies with and without CCS, CCS technology, and downstream sectors of the cement industry. An agent-based model is developed to simulate the effects of various policy measures on multi-agents’ behaviors and to examine CO<sub>2</sub> emissions, costs, and CCS penetration rates. The results indicate that CCS diffusion will start in 2026, and a diffusion rate of 45.2% will be achieved by 2060, considering China's 30% investment subsidy ratio. The policy with the highest rate of CCS diffusion (62%) and the highest rate of emission reduction (87%) by 2060 provides for a 30% investment subsidy combined with a full quota charge. The 10% investment subsidy policy has the lowest unit cost of abatement (133 CNY/tCO<sub>2</sub>).</div></div>","PeriodicalId":11672,"journal":{"name":"Energy Policy","volume":"199 ","pages":"Article 114527"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Policy","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301421525000345","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon capture and storage (CCS) technology has the potential to accelerate the cement industry's transition to low carbon, but it is still in the early demonstration stage. Strong policies are needed to promote its large-scale development. However, previous research was inadequate to identify the intertwined motivating factors behind the policy, which led to the policies being less effective. Therefore, this paper aims to explore the impact of policy on the diffusion of CCS in the cement industry by delving into the interaction mechanisms among agents, including the government, cement companies with and without CCS, CCS technology, and downstream sectors of the cement industry. An agent-based model is developed to simulate the effects of various policy measures on multi-agents’ behaviors and to examine CO2 emissions, costs, and CCS penetration rates. The results indicate that CCS diffusion will start in 2026, and a diffusion rate of 45.2% will be achieved by 2060, considering China's 30% investment subsidy ratio. The policy with the highest rate of CCS diffusion (62%) and the highest rate of emission reduction (87%) by 2060 provides for a 30% investment subsidy combined with a full quota charge. The 10% investment subsidy policy has the lowest unit cost of abatement (133 CNY/tCO2).
期刊介绍:
Energy policy is the manner in which a given entity (often governmental) has decided to address issues of energy development including energy conversion, distribution and use as well as reduction of greenhouse gas emissions in order to contribute to climate change mitigation. The attributes of energy policy may include legislation, international treaties, incentives to investment, guidelines for energy conservation, taxation and other public policy techniques.
Energy policy is closely related to climate change policy because totalled worldwide the energy sector emits more greenhouse gas than other sectors.