Effects of Fe/Mg-modified lignocellulosic biochar on in vitro ruminal microorganism fermentation of corn stover

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Yuping Liu , Jiyu Sun , Taotao Zhao , Lin Wang , Chenyu Zhao , Jingjing Fu , Dawei Li , Haiye Yu
{"title":"Effects of Fe/Mg-modified lignocellulosic biochar on in vitro ruminal microorganism fermentation of corn stover","authors":"Yuping Liu ,&nbsp;Jiyu Sun ,&nbsp;Taotao Zhao ,&nbsp;Lin Wang ,&nbsp;Chenyu Zhao ,&nbsp;Jingjing Fu ,&nbsp;Dawei Li ,&nbsp;Haiye Yu","doi":"10.1016/j.biortech.2025.132172","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effectiveness and synergistic mechanism of trace-element-modified biochar (BC) on <em>in vitro</em> ruminal fermentation of lignocellulose. Fe/Mg-modified BC containing Fe@BC, Mg@BC and Fe/Mg@BC were prepared, and their effects on <em>in vitro</em> ruminal fermentation of corn stover were assessed. Results indicate that Mg@BC achieved the highest reducing-sugar content (320.4 mg/L) with an additive dose of 12 g/L and a substrate load of 4 %, owing to the presence of enriched lignocellulolytic microorganisms like Treponema and Bacillus. Moreover, Mg@BC promoted the growth of acid-producing bacteria, including Bacteroides and Lachnospiraceae, resulting in the highest production of volatile fatty acid (3.2 g/L). Fe@BC increased the amount of hydrogenogens including Prevotellaceae_YAB2003 and Lachnospiraceae_NK3A20, contributing to the highest hydrogen production. Meanwhile, Fe/Mg@BC facilitated the growth of Succiniclasticum and Lactobacillus, which effectively produce succinic and lactic acids. These findings provide new insights into efficient lignocellulose bioconversion via <em>in vitro</em> ruminal fermentation with Fe/Mg-modified BC supplementation.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"421 ","pages":"Article 132172"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425001385","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effectiveness and synergistic mechanism of trace-element-modified biochar (BC) on in vitro ruminal fermentation of lignocellulose. Fe/Mg-modified BC containing Fe@BC, Mg@BC and Fe/Mg@BC were prepared, and their effects on in vitro ruminal fermentation of corn stover were assessed. Results indicate that Mg@BC achieved the highest reducing-sugar content (320.4 mg/L) with an additive dose of 12 g/L and a substrate load of 4 %, owing to the presence of enriched lignocellulolytic microorganisms like Treponema and Bacillus. Moreover, Mg@BC promoted the growth of acid-producing bacteria, including Bacteroides and Lachnospiraceae, resulting in the highest production of volatile fatty acid (3.2 g/L). Fe@BC increased the amount of hydrogenogens including Prevotellaceae_YAB2003 and Lachnospiraceae_NK3A20, contributing to the highest hydrogen production. Meanwhile, Fe/Mg@BC facilitated the growth of Succiniclasticum and Lactobacillus, which effectively produce succinic and lactic acids. These findings provide new insights into efficient lignocellulose bioconversion via in vitro ruminal fermentation with Fe/Mg-modified BC supplementation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信