Climate variability and heat wave dynamics in India: Insights from land- atmospheric interactions

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
C.S. Neethu, B. Abish
{"title":"Climate variability and heat wave dynamics in India: Insights from land- atmospheric interactions","authors":"C.S. Neethu,&nbsp;B. Abish","doi":"10.1016/j.dynatmoce.2025.101537","DOIUrl":null,"url":null,"abstract":"<div><div>Heat waves have emerged as one of the most severe and destructive meteorological phenomena, significantly threatening human health, agricultural productivity, and ecosystems due to their increasing frequency, duration, and intensity. In India, these extreme events predominantly occur during the pre-monsoon months (March to mid-June), with recent years (2016, 2019, 2022, and 2023) showing a clear intensification in their occurrence. This study aims to explore the dynamics of heat waves, synoptic conditions, surface land-atmosphere interactions, and regional variations in recent years across India, utilizing maximum temperature data from the India Meteorological Department (IMD) and heat wave indices to evaluate their intensity and impact. Analysis of maximum temperature data and heatwave indices highlights a notable rise in heatwave frequency and duration, particularly in northern and central India. The 2-meter (2 m) temperature anomaly in north, central, and southern India exceeded 2.5°C, while the 925hPa temperature showed significant warming trends in north and northwest India. The analysis of the spatial distribution of the planetary boundary layer (PBL) and total cloud cover (TCC) indicates reduced cloud cover and an increased PBL, intensifying heat wave conditions across north and central regions. The warm air advection and sinking air in the descending limb of the Walker circulation ensured a stable and drier atmosphere, favoring heatwave conditions. Moreover, a persistent anticyclonic circulation and its associated high-pressure system enabled heat-trapping within the atmosphere, leading to prolonged and intensified heat wave conditions. The study indicates a shift in the position and strength of the subtropical jet stream (STJ) during these years, highlighting its significant role in developing and intensifying heat waves.</div></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"110 ","pages":"Article 101537"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026525000120","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Heat waves have emerged as one of the most severe and destructive meteorological phenomena, significantly threatening human health, agricultural productivity, and ecosystems due to their increasing frequency, duration, and intensity. In India, these extreme events predominantly occur during the pre-monsoon months (March to mid-June), with recent years (2016, 2019, 2022, and 2023) showing a clear intensification in their occurrence. This study aims to explore the dynamics of heat waves, synoptic conditions, surface land-atmosphere interactions, and regional variations in recent years across India, utilizing maximum temperature data from the India Meteorological Department (IMD) and heat wave indices to evaluate their intensity and impact. Analysis of maximum temperature data and heatwave indices highlights a notable rise in heatwave frequency and duration, particularly in northern and central India. The 2-meter (2 m) temperature anomaly in north, central, and southern India exceeded 2.5°C, while the 925hPa temperature showed significant warming trends in north and northwest India. The analysis of the spatial distribution of the planetary boundary layer (PBL) and total cloud cover (TCC) indicates reduced cloud cover and an increased PBL, intensifying heat wave conditions across north and central regions. The warm air advection and sinking air in the descending limb of the Walker circulation ensured a stable and drier atmosphere, favoring heatwave conditions. Moreover, a persistent anticyclonic circulation and its associated high-pressure system enabled heat-trapping within the atmosphere, leading to prolonged and intensified heat wave conditions. The study indicates a shift in the position and strength of the subtropical jet stream (STJ) during these years, highlighting its significant role in developing and intensifying heat waves.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dynamics of Atmospheres and Oceans
Dynamics of Atmospheres and Oceans 地学-地球化学与地球物理
CiteScore
3.10
自引率
5.90%
发文量
43
审稿时长
>12 weeks
期刊介绍: Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate. Authors are invited to submit articles, short contributions or scholarly reviews in the following areas: •Dynamic meteorology •Physical oceanography •Geophysical fluid dynamics •Climate variability and climate change •Atmosphere-ocean-biosphere-cryosphere interactions •Prediction and predictability •Scale interactions Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信