BACVC: Bi-adaptive and cross-view consistency for incomplete multi-view subspace clustering

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jiaqiyu Zhan, Yuesheng Zhu, Guibo Luo
{"title":"BACVC: Bi-adaptive and cross-view consistency for incomplete multi-view subspace clustering","authors":"Jiaqiyu Zhan,&nbsp;Yuesheng Zhu,&nbsp;Guibo Luo","doi":"10.1016/j.aej.2025.01.089","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-view subspace clustering leverages complementary information from different views to uncover latent subspaces. However, incomplete multi-view data is prevalent, particularly in fields such as communication systems. Incomplete Multi-View Subspace Clustering (IMSC) addresses this challenge but faces two main challenges: (1) neglecting dissimilarities between views and samples, and (2) insufficient handling of cross-view consistency. To tackle these issues, we propose a novel IMSC framework, referred to as Bi-Adaptive and Cross-View Consistency (BACVC). BACVC improves incomplete data recovery and subspace structure discovery through view-adaptive tensor rank constraints, data-adaptive high-order correlations, and view-level contrastive learning. Specifically, we first apply tensor factorization with view-adaptive tensor rank approximation to enforce low-rank constraints on a stacked affinity tensor, capturing the view-specific subspace block-diagonal structure. We then introduce a data-adaptive non-uniform hypergraph-induced hyper-Laplacian regularization to model high-order correlations and guide the recovery of incomplete data. Finally, contrastive learning is applied to the soft clustering assignment of each view, ensuring cross-view structural consistency. Extensive experiments on four benchmark datasets show that BACVC outperforms eleven state-of-the-art methods, with improvements of up to 4.39%, 5.43%, and 3.95% in ACC, NMI, and purity, respectively. Experimental results demonstrate the robustness of BACVC in handling incomplete data and its effectiveness in practical applications.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"119 ","pages":"Pages 623-633"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825001164","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-view subspace clustering leverages complementary information from different views to uncover latent subspaces. However, incomplete multi-view data is prevalent, particularly in fields such as communication systems. Incomplete Multi-View Subspace Clustering (IMSC) addresses this challenge but faces two main challenges: (1) neglecting dissimilarities between views and samples, and (2) insufficient handling of cross-view consistency. To tackle these issues, we propose a novel IMSC framework, referred to as Bi-Adaptive and Cross-View Consistency (BACVC). BACVC improves incomplete data recovery and subspace structure discovery through view-adaptive tensor rank constraints, data-adaptive high-order correlations, and view-level contrastive learning. Specifically, we first apply tensor factorization with view-adaptive tensor rank approximation to enforce low-rank constraints on a stacked affinity tensor, capturing the view-specific subspace block-diagonal structure. We then introduce a data-adaptive non-uniform hypergraph-induced hyper-Laplacian regularization to model high-order correlations and guide the recovery of incomplete data. Finally, contrastive learning is applied to the soft clustering assignment of each view, ensuring cross-view structural consistency. Extensive experiments on four benchmark datasets show that BACVC outperforms eleven state-of-the-art methods, with improvements of up to 4.39%, 5.43%, and 3.95% in ACC, NMI, and purity, respectively. Experimental results demonstrate the robustness of BACVC in handling incomplete data and its effectiveness in practical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信