Innovación en sueño

Q4 Medicine
Laura Vigil, Toni Zapata, Andrea Grau, Marta Bonet, Montserrat Montaña, María Piñar
{"title":"Innovación en sueño","authors":"Laura Vigil,&nbsp;Toni Zapata,&nbsp;Andrea Grau,&nbsp;Marta Bonet,&nbsp;Montserrat Montaña,&nbsp;María Piñar","doi":"10.1016/j.opresp.2025.100402","DOIUrl":null,"url":null,"abstract":"<div><div>Advances in sleep medicine have driven significant improvements in the diagnosis and treatment of sleep disorders such as obstructive sleep apnea (OSA). This disorder affects one billion people worldwide and traditionally, diagnosis is based on polysomnography (PSG), a laborious method that requires specialized personnel. However, the integration of artificial intelligence (AI) in sleep medicine has made it possible to automate the analysis of sleep phases and respiratory events with high accuracy.</div><div>Machine learning algorithms and neural networks have proven to be effective in automatic sleep coding, with hit rates comparable to those of human experts. These advances make it possible to improve the efficiency of sleep labs and to personalize OSA treatment. In addition, techniques such as cluster analysis are used to identify symptomatic patterns and phenotypes, which improves understanding of OSA pathophysiology and optimizes CPAP treatment.</div><div>However, implementation of AI in hospitals faces technological, ethical, and legal barriers. Challenges include data quality, patient privacy, and the need for specialized personnel. Despite these obstacles, AI and Big Data have the potential to transform medical care for sleep disorders, improving both diagnosis and treatment adherence, provided regulatory and cultural barriers are overcome.</div></div>","PeriodicalId":34317,"journal":{"name":"Open Respiratory Archives","volume":"6 ","pages":"Article 100402"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Respiratory Archives","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2659663625000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in sleep medicine have driven significant improvements in the diagnosis and treatment of sleep disorders such as obstructive sleep apnea (OSA). This disorder affects one billion people worldwide and traditionally, diagnosis is based on polysomnography (PSG), a laborious method that requires specialized personnel. However, the integration of artificial intelligence (AI) in sleep medicine has made it possible to automate the analysis of sleep phases and respiratory events with high accuracy.
Machine learning algorithms and neural networks have proven to be effective in automatic sleep coding, with hit rates comparable to those of human experts. These advances make it possible to improve the efficiency of sleep labs and to personalize OSA treatment. In addition, techniques such as cluster analysis are used to identify symptomatic patterns and phenotypes, which improves understanding of OSA pathophysiology and optimizes CPAP treatment.
However, implementation of AI in hospitals faces technological, ethical, and legal barriers. Challenges include data quality, patient privacy, and the need for specialized personnel. Despite these obstacles, AI and Big Data have the potential to transform medical care for sleep disorders, improving both diagnosis and treatment adherence, provided regulatory and cultural barriers are overcome.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Respiratory Archives
Open Respiratory Archives Medicine-Pulmonary and Respiratory Medicine
CiteScore
1.10
自引率
0.00%
发文量
58
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信