Assembly of high-performance zinc-ion hybrid capacitor using soy residue-derived porous carbon as cathode and HCl treated zinc foil as anode

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Song Wang , Jia Xue , Xuecheng Chen
{"title":"Assembly of high-performance zinc-ion hybrid capacitor using soy residue-derived porous carbon as cathode and HCl treated zinc foil as anode","authors":"Song Wang ,&nbsp;Jia Xue ,&nbsp;Xuecheng Chen","doi":"10.1016/j.est.2025.115616","DOIUrl":null,"url":null,"abstract":"<div><div>As a secure energy storage device, zinc-ion hybrid capacitors (ZHCs) have garnered significant research attention. Prior investigations have demonstrated that the performance of ZHCs is profoundly impacted by the structural characteristics or compositional design of both the anode and cathode materials, as well as the electrolyte. Consequently, this study employed porous carbon derived from soy residue as the cathode, and HCl treated zinc foil as anode to construct ZHCs. Influence of the preparation condition of the soy residue-derived porous carbon, and the morphology of the zinc foil anode on the assembled ZHCs performance was systematically explored. Utilizing a soy residue-derived porous carbon material with the specific surface area of 3216.2 m<sup>2</sup> g<sup>−1</sup> as the cathode, and a zinc foil anode featuring surface cracks markedly improved the performance of the fabricated ZHCs. The specific capacitance and power density of the assembled ZHC, incorporating the aforementioned cathode and anode, achieved 514.6 F g<sup>−1</sup> and 323.5 Wh kg<sup>−1</sup>, respectively. To ensure the cycling stability of ZHC, the zinc electrode was protected using nickel foam. The assembled ZHC maintained a 100 % specific capacitance retention after 5000 cycles. For the advancement of high-performance ZHCs, it is imperative to refine the structural attributes of the porous carbon cathode and zinc foil anode, alongside optimizing the zinc anode protection method.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"114 ","pages":"Article 115616"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25003299","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As a secure energy storage device, zinc-ion hybrid capacitors (ZHCs) have garnered significant research attention. Prior investigations have demonstrated that the performance of ZHCs is profoundly impacted by the structural characteristics or compositional design of both the anode and cathode materials, as well as the electrolyte. Consequently, this study employed porous carbon derived from soy residue as the cathode, and HCl treated zinc foil as anode to construct ZHCs. Influence of the preparation condition of the soy residue-derived porous carbon, and the morphology of the zinc foil anode on the assembled ZHCs performance was systematically explored. Utilizing a soy residue-derived porous carbon material with the specific surface area of 3216.2 m2 g−1 as the cathode, and a zinc foil anode featuring surface cracks markedly improved the performance of the fabricated ZHCs. The specific capacitance and power density of the assembled ZHC, incorporating the aforementioned cathode and anode, achieved 514.6 F g−1 and 323.5 Wh kg−1, respectively. To ensure the cycling stability of ZHC, the zinc electrode was protected using nickel foam. The assembled ZHC maintained a 100 % specific capacitance retention after 5000 cycles. For the advancement of high-performance ZHCs, it is imperative to refine the structural attributes of the porous carbon cathode and zinc foil anode, alongside optimizing the zinc anode protection method.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信