Analysis of toxicity and mechanisms of busulfan in non-obstructive azoospermia: A genomic and toxicological approach integrating molecular docking, single-cell sequencing, and experimentation in vivo

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Yanggang Hong , Qichao Yuan , Yi Wang , Deqi Wang , Xiaoju Guan , Congde Chen
{"title":"Analysis of toxicity and mechanisms of busulfan in non-obstructive azoospermia: A genomic and toxicological approach integrating molecular docking, single-cell sequencing, and experimentation in vivo","authors":"Yanggang Hong ,&nbsp;Qichao Yuan ,&nbsp;Yi Wang ,&nbsp;Deqi Wang ,&nbsp;Xiaoju Guan ,&nbsp;Congde Chen","doi":"10.1016/j.ecoenv.2025.117878","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental pollutants, including chemical contaminants, heavy metals, and pesticides, have been linked to adverse effects on male reproductive health, particularly sperm quality. Non-obstructive azoospermia (NOA) is a severe form of male infertility caused by intrinsic testicular dysfunction, leading to a complete absence of sperm in the ejaculate. Busulfan, an alkylating chemotherapeutic agent widely used to treat chronic myelogenous leukemia, is known to induce NOA through its toxic effects on spermatogonial stem cells (SSCs). This study aimed to identify key molecular targets and pathways disrupted by busulfan in the testicular environment. By integrating molecular docking, single-cell RNA sequencing, and <em>in vivo</em> experimentation, the study identified POLE and LRAT as critical proteins. These proteins were shown to interact strongly with busulfan, leading to genomic instability and increased germ cell apoptosis during spermatogenesis. Additionally, the immune landscape of NOA-affected testes revealed significant changes in immune cell infiltration, potentially worsening the condition. These findings offer new insights into the mechanisms of busulfan-induced NOA and suggest potential therapeutic targets for preserving male fertility in chemotherapy patients. This research advances the understanding of chemotherapy-induced reproductive toxicity and emphasizes the need for strategies to reduce its negative effects on fertility.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"291 ","pages":"Article 117878"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325002143","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental pollutants, including chemical contaminants, heavy metals, and pesticides, have been linked to adverse effects on male reproductive health, particularly sperm quality. Non-obstructive azoospermia (NOA) is a severe form of male infertility caused by intrinsic testicular dysfunction, leading to a complete absence of sperm in the ejaculate. Busulfan, an alkylating chemotherapeutic agent widely used to treat chronic myelogenous leukemia, is known to induce NOA through its toxic effects on spermatogonial stem cells (SSCs). This study aimed to identify key molecular targets and pathways disrupted by busulfan in the testicular environment. By integrating molecular docking, single-cell RNA sequencing, and in vivo experimentation, the study identified POLE and LRAT as critical proteins. These proteins were shown to interact strongly with busulfan, leading to genomic instability and increased germ cell apoptosis during spermatogenesis. Additionally, the immune landscape of NOA-affected testes revealed significant changes in immune cell infiltration, potentially worsening the condition. These findings offer new insights into the mechanisms of busulfan-induced NOA and suggest potential therapeutic targets for preserving male fertility in chemotherapy patients. This research advances the understanding of chemotherapy-induced reproductive toxicity and emphasizes the need for strategies to reduce its negative effects on fertility.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信