Asymmetric representation of symmetric semantic information in the human brain

Q4 Neuroscience
Jiaxin Wang , Kiichi Kawahata , Antoine Blanc , Naoya Maeda , Shinji Nishimoto , Satoshi Nishida
{"title":"Asymmetric representation of symmetric semantic information in the human brain","authors":"Jiaxin Wang ,&nbsp;Kiichi Kawahata ,&nbsp;Antoine Blanc ,&nbsp;Naoya Maeda ,&nbsp;Shinji Nishimoto ,&nbsp;Satoshi Nishida","doi":"10.1016/j.ynirp.2025.100243","DOIUrl":null,"url":null,"abstract":"<div><div>Specific pairs of semantic entities have symmetric relationships, such as word pairs with opposite meanings (e.g., “intelligent” and “stupid”; “human” and “mechanical”). Such semantic symmetry is a key feature of semantic information. However, the representation of symmetric semantic information in the brain is not yet understood. For example, it remains unclear whether symmetric pairs of semantic information are represented in overlapping or distinct brain regions. We addressed this question in a data-driven manner by using the voxelwise modeling of movie-evoked cortical response measured by functional magnetic resonance imaging. In this modeling, response in each voxel was predicted from semantic labels designated for each movie scene. The semantic labels consisted of 30 different concepts, including 15 pairs of semantically symmetric concepts. Each concept was manually evaluated using a 5-point scale. By localizing the semantic representation associated with each concept based on the voxelwise accuracy of brain-response predictions, we found that semantic representations of symmetric concept pairs are broadly distributed but with little overlap in the cortex. Additionally, the weight of voxelwise models revealed highly complex, various patterns of cortical representations for each concept pair. These results suggest that symmetric semantic information has rather asymmetric and heterogeneous representations in the human brain.</div></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"5 1","pages":"Article 100243"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695602500011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Specific pairs of semantic entities have symmetric relationships, such as word pairs with opposite meanings (e.g., “intelligent” and “stupid”; “human” and “mechanical”). Such semantic symmetry is a key feature of semantic information. However, the representation of symmetric semantic information in the brain is not yet understood. For example, it remains unclear whether symmetric pairs of semantic information are represented in overlapping or distinct brain regions. We addressed this question in a data-driven manner by using the voxelwise modeling of movie-evoked cortical response measured by functional magnetic resonance imaging. In this modeling, response in each voxel was predicted from semantic labels designated for each movie scene. The semantic labels consisted of 30 different concepts, including 15 pairs of semantically symmetric concepts. Each concept was manually evaluated using a 5-point scale. By localizing the semantic representation associated with each concept based on the voxelwise accuracy of brain-response predictions, we found that semantic representations of symmetric concept pairs are broadly distributed but with little overlap in the cortex. Additionally, the weight of voxelwise models revealed highly complex, various patterns of cortical representations for each concept pair. These results suggest that symmetric semantic information has rather asymmetric and heterogeneous representations in the human brain.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信