Structural analysis of the LiCoO2 cathodes/garnet-type Li6.5La3Zr1.5Ta0.5O12 solid electrolyte interface

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
K. Niitsu , F. Ichihara , S. Miyoshi , M. Ode , K. Mitsuishi , T. Masuda , K. Takada
{"title":"Structural analysis of the LiCoO2 cathodes/garnet-type Li6.5La3Zr1.5Ta0.5O12 solid electrolyte interface","authors":"K. Niitsu ,&nbsp;F. Ichihara ,&nbsp;S. Miyoshi ,&nbsp;M. Ode ,&nbsp;K. Mitsuishi ,&nbsp;T. Masuda ,&nbsp;K. Takada","doi":"10.1016/j.ssi.2025.116804","DOIUrl":null,"url":null,"abstract":"<div><div>The sinterability of oxide cathode LiCoO<sub>2</sub> and garnet-type solid electrolyte Li<sub>7-<em>x</em></sub>La<sub>3</sub>Zr<sub>2-<em>x</em></sub>Ta<sub><em>x</em></sub>O<sub>12</sub> (<em>x</em> = 0.5) at 980 and 1080 °C has been studied using an integrated suite of scanning transmission electron microscopy and spectroscopic techniques, with a particular focus on the LiCoO<sub>2</sub>/Li<sub>7-<em>x</em></sub>La<sub>3</sub>Zr<sub>2-<em>x</em></sub>Ta<sub><em>x</em></sub>O<sub>12</sub> interfaces. Whereas the densification hardly progresses and the interdiffusion is limited to the vicinity of the interface at 980 °C, dramatic densification can be achieved at 1080 °C at the expense of severe interfacial modification. The structural, chemical, and electronic characteristics of the interphases are systematically investigated. Two kinds of interphases are formed: one has a disordered LiCoO<sub>2</sub> structure, thickly forming in contact with LiCoO<sub>2</sub>, and the other has a structural and chemical character similar to Li<sub>7-<em>x</em></sub>La<sub>3</sub>Zr<sub>2-<em>x</em></sub>Ta<sub><em>x</em></sub>O<sub>12</sub>, thinly forming in contact with Li<sub>7-<em>x</em></sub>La<sub>3</sub>Zr<sub>2-<em>x</em></sub>Ta<sub><em>x</em></sub>O<sub>12</sub>. The former is assumed to play a vital role in the densification of the pellet. Analysis using energy-dispersive spectroscopy and electron energy loss spectroscopy reveals that the disordered LiCoO<sub>2</sub> interphase is somewhat depleted of Li and contaminated with La, Zr, and Ta. These properties are considered less favorable for achieving undisturbed ionic conductivity.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"421 ","pages":"Article 116804"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000232","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The sinterability of oxide cathode LiCoO2 and garnet-type solid electrolyte Li7-xLa3Zr2-xTaxO12 (x = 0.5) at 980 and 1080 °C has been studied using an integrated suite of scanning transmission electron microscopy and spectroscopic techniques, with a particular focus on the LiCoO2/Li7-xLa3Zr2-xTaxO12 interfaces. Whereas the densification hardly progresses and the interdiffusion is limited to the vicinity of the interface at 980 °C, dramatic densification can be achieved at 1080 °C at the expense of severe interfacial modification. The structural, chemical, and electronic characteristics of the interphases are systematically investigated. Two kinds of interphases are formed: one has a disordered LiCoO2 structure, thickly forming in contact with LiCoO2, and the other has a structural and chemical character similar to Li7-xLa3Zr2-xTaxO12, thinly forming in contact with Li7-xLa3Zr2-xTaxO12. The former is assumed to play a vital role in the densification of the pellet. Analysis using energy-dispersive spectroscopy and electron energy loss spectroscopy reveals that the disordered LiCoO2 interphase is somewhat depleted of Li and contaminated with La, Zr, and Ta. These properties are considered less favorable for achieving undisturbed ionic conductivity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信