Modelling of nucleate pool boiling on coated substrates using machine learning and empirical approaches

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Vijay Kuberan, Sateesh Gedupudi
{"title":"Modelling of nucleate pool boiling on coated substrates using machine learning and empirical approaches","authors":"Vijay Kuberan,&nbsp;Sateesh Gedupudi","doi":"10.1016/j.ijheatmasstransfer.2025.126747","DOIUrl":null,"url":null,"abstract":"<div><div>Surface modification results in substantial improvement in pool boiling heat transfer. Thin film-coated and porous-coated substrates, through different materials and techniques, significantly boost heat transfer through increased nucleation due to the presence of micro-cavities on the surface. The existing models and empirical correlations for boiling on these coated surfaces are constrained by specific operating conditions and parameter ranges and are hence limited by their prediction accuracy. This study focuses on developing an accurate and reliable Machine Learning (ML) model by effectively capturing the actual relationship between the influencing variables. Various ML algorithms have been evaluated on the thin film-coated and porous-coated datasets amassed from different studies. The CatBoost model demonstrated the best prediction accuracy after cross-validation and hyperparameter tuning. For the optimized CatBoost model, SHAP analysis has been carried out to identify the prominent influencing parameters and interpret the impact of parameter variation on the target variable. This model interpretation clearly justifies the decisions behind the model predictions, making it a robust model for the prediction of nucleate boiling Heat Transfer Coefficient (HTC) on coated surfaces. Finally, the existing empirical correlations have been assessed, and new correlations have been proposed to predict the HTC on these surfaces with the inclusion of influential parameters identified through SHAP interpretation.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"242 ","pages":"Article 126747"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025000882","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Surface modification results in substantial improvement in pool boiling heat transfer. Thin film-coated and porous-coated substrates, through different materials and techniques, significantly boost heat transfer through increased nucleation due to the presence of micro-cavities on the surface. The existing models and empirical correlations for boiling on these coated surfaces are constrained by specific operating conditions and parameter ranges and are hence limited by their prediction accuracy. This study focuses on developing an accurate and reliable Machine Learning (ML) model by effectively capturing the actual relationship between the influencing variables. Various ML algorithms have been evaluated on the thin film-coated and porous-coated datasets amassed from different studies. The CatBoost model demonstrated the best prediction accuracy after cross-validation and hyperparameter tuning. For the optimized CatBoost model, SHAP analysis has been carried out to identify the prominent influencing parameters and interpret the impact of parameter variation on the target variable. This model interpretation clearly justifies the decisions behind the model predictions, making it a robust model for the prediction of nucleate boiling Heat Transfer Coefficient (HTC) on coated surfaces. Finally, the existing empirical correlations have been assessed, and new correlations have been proposed to predict the HTC on these surfaces with the inclusion of influential parameters identified through SHAP interpretation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信