Quantum dynamics of the effective field theory of the Calogero-Sutherland model

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Federico L. Bottesi , Guillermo R. Zemba
{"title":"Quantum dynamics of the effective field theory of the Calogero-Sutherland model","authors":"Federico L. Bottesi ,&nbsp;Guillermo R. Zemba","doi":"10.1016/j.nuclphysb.2025.116825","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the known effective field theory of the Calogero-Sutherland model in the thermodynamic limit of large number of particles, obtained from the standard procedure in conformal field theory: the Hilbert space is constructed <em>a priori</em> in terms of irreducible representations of the symmetry algebra, and not by diagonalization of the hamiltonian, which is given in terms of fields that carry representations of the <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>+</mo><mo>∞</mo></mrow></msub></math></span> algebra (representing the incompressibility of the Fermi sea). Nevertheless, the role of the effective hamiltonian of the theory is to establish a specific dynamics, which deserves further consideration. We show that the time evolution of the (chiral or antichiral) density field is given by the quantum Benjamin-Ono equation, in agreement with previous results obtained from the alternative description of the continuous limit of the model, based on quantum hydrodynamics. In this study, all calculations are performed at the quantum operator level, without making any assumption on the semiclassical limit of the fields and their equations of motion. This result may be considered as a reliable indication of the equivalence between the quantum field theoretic and quantum hydrodynamical formulations of the effective theories of the model. A one-dimensional quantum compressible fluid that includes both chiralities is the physical picture that emerges for the continuous limit of the Calogero-Sutherland model.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1012 ","pages":"Article 116825"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325000355","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the known effective field theory of the Calogero-Sutherland model in the thermodynamic limit of large number of particles, obtained from the standard procedure in conformal field theory: the Hilbert space is constructed a priori in terms of irreducible representations of the symmetry algebra, and not by diagonalization of the hamiltonian, which is given in terms of fields that carry representations of the W1+ algebra (representing the incompressibility of the Fermi sea). Nevertheless, the role of the effective hamiltonian of the theory is to establish a specific dynamics, which deserves further consideration. We show that the time evolution of the (chiral or antichiral) density field is given by the quantum Benjamin-Ono equation, in agreement with previous results obtained from the alternative description of the continuous limit of the model, based on quantum hydrodynamics. In this study, all calculations are performed at the quantum operator level, without making any assumption on the semiclassical limit of the fields and their equations of motion. This result may be considered as a reliable indication of the equivalence between the quantum field theoretic and quantum hydrodynamical formulations of the effective theories of the model. A one-dimensional quantum compressible fluid that includes both chiralities is the physical picture that emerges for the continuous limit of the Calogero-Sutherland model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信