Hybrid cellular automata-based air pollution model for traffic scenario microsimulations

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Tabea S. Sonnenschein , Zhendong Yuan , Jibran Khan , Jules Kerckhoffs , Roel C.H. Vermeulen , Simon Scheider
{"title":"Hybrid cellular automata-based air pollution model for traffic scenario microsimulations","authors":"Tabea S. Sonnenschein ,&nbsp;Zhendong Yuan ,&nbsp;Jibran Khan ,&nbsp;Jules Kerckhoffs ,&nbsp;Roel C.H. Vermeulen ,&nbsp;Simon Scheider","doi":"10.1016/j.envsoft.2025.106356","DOIUrl":null,"url":null,"abstract":"<div><div>Scenario microsimulations like agent-based models can account for feedbacks and spatio-temporal and social heterogeneity when projecting future intervention impacts. Addressing air pollution exposure requires traffic scenario models (<em>i.e</em>. of car-free zones). Traditional air pollution models do not meet all requirements for traffic scenario microsimulation: isolating traffic emission, integrating relevant dispersion moderators, while computationally efficient, interoperable and valid. We propose a hybrid model of land use regression-based baseline concentrations and on-road emissions in conjunction with cellular automata-based off-road dispersion. The model efficiently assesses air pollution, while accounting for meteorological and morphological dispersion processes. We calibrate using genetic algorithms and externally validate the model based on mobile measurements and fixed-site routine monitoring data of NO2 concentrations across Amsterdam. Our model achieves an external validation R2 of 0.60 and 0.48 s computation time in a 50 m × 50 m raster. Further, we successfully projected the NO2 reduction of the first Covid-19 lockdown traffic scenario (R2 0.57).</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106356"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000404","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Scenario microsimulations like agent-based models can account for feedbacks and spatio-temporal and social heterogeneity when projecting future intervention impacts. Addressing air pollution exposure requires traffic scenario models (i.e. of car-free zones). Traditional air pollution models do not meet all requirements for traffic scenario microsimulation: isolating traffic emission, integrating relevant dispersion moderators, while computationally efficient, interoperable and valid. We propose a hybrid model of land use regression-based baseline concentrations and on-road emissions in conjunction with cellular automata-based off-road dispersion. The model efficiently assesses air pollution, while accounting for meteorological and morphological dispersion processes. We calibrate using genetic algorithms and externally validate the model based on mobile measurements and fixed-site routine monitoring data of NO2 concentrations across Amsterdam. Our model achieves an external validation R2 of 0.60 and 0.48 s computation time in a 50 m × 50 m raster. Further, we successfully projected the NO2 reduction of the first Covid-19 lockdown traffic scenario (R2 0.57).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信