Tabea S. Sonnenschein , Zhendong Yuan , Jibran Khan , Jules Kerckhoffs , Roel C.H. Vermeulen , Simon Scheider
{"title":"Hybrid cellular automata-based air pollution model for traffic scenario microsimulations","authors":"Tabea S. Sonnenschein , Zhendong Yuan , Jibran Khan , Jules Kerckhoffs , Roel C.H. Vermeulen , Simon Scheider","doi":"10.1016/j.envsoft.2025.106356","DOIUrl":null,"url":null,"abstract":"<div><div>Scenario microsimulations like agent-based models can account for feedbacks and spatio-temporal and social heterogeneity when projecting future intervention impacts. Addressing air pollution exposure requires traffic scenario models (<em>i.e</em>. of car-free zones). Traditional air pollution models do not meet all requirements for traffic scenario microsimulation: isolating traffic emission, integrating relevant dispersion moderators, while computationally efficient, interoperable and valid. We propose a hybrid model of land use regression-based baseline concentrations and on-road emissions in conjunction with cellular automata-based off-road dispersion. The model efficiently assesses air pollution, while accounting for meteorological and morphological dispersion processes. We calibrate using genetic algorithms and externally validate the model based on mobile measurements and fixed-site routine monitoring data of NO2 concentrations across Amsterdam. Our model achieves an external validation R2 of 0.60 and 0.48 s computation time in a 50 m × 50 m raster. Further, we successfully projected the NO2 reduction of the first Covid-19 lockdown traffic scenario (R2 0.57).</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106356"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000404","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Scenario microsimulations like agent-based models can account for feedbacks and spatio-temporal and social heterogeneity when projecting future intervention impacts. Addressing air pollution exposure requires traffic scenario models (i.e. of car-free zones). Traditional air pollution models do not meet all requirements for traffic scenario microsimulation: isolating traffic emission, integrating relevant dispersion moderators, while computationally efficient, interoperable and valid. We propose a hybrid model of land use regression-based baseline concentrations and on-road emissions in conjunction with cellular automata-based off-road dispersion. The model efficiently assesses air pollution, while accounting for meteorological and morphological dispersion processes. We calibrate using genetic algorithms and externally validate the model based on mobile measurements and fixed-site routine monitoring data of NO2 concentrations across Amsterdam. Our model achieves an external validation R2 of 0.60 and 0.48 s computation time in a 50 m × 50 m raster. Further, we successfully projected the NO2 reduction of the first Covid-19 lockdown traffic scenario (R2 0.57).
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.