Disparities in electric vehicle charging infrastructure distribution: A socio-spatial clustering study in King County, Washington

IF 10.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Shiqi Ding , Lingzi Wu
{"title":"Disparities in electric vehicle charging infrastructure distribution: A socio-spatial clustering study in King County, Washington","authors":"Shiqi Ding ,&nbsp;Lingzi Wu","doi":"10.1016/j.scs.2025.106193","DOIUrl":null,"url":null,"abstract":"<div><div>Transportation electrification has emerged as a critical strategy for mitigating greenhouse gas emissions, yet recent studies have indicated multifaceted injustices in adopting electric vehicles (EVs). One key issue is the equitable planning of public electric vehicle charging infrastructure (EVCI), which is essential for promoting widespread EV use. While existing research predominantly focuses on measuring accessibility, limited attention has been given to equity assessment based on urban social typologies. This study examined EVCI distribution in King County, Washington, using a three-step framework: First, we clustered six micro-urban typologies incorporating 17 socio-spatial indicators. Second, we measured and mapped charging capacity standardized rates across the county. Third, we identified key factors, examined how their influence varies geographically, and analyzed disparities by comparing specific clusters. Our findings show that the current distribution of charging stations is capacity-driven, favoring en-route recharging needs over longer-stay residential charging needs. This trend disproportionately affects underserved communities in southern King County, leaving large residential areas underinvested. This utilitarian distribution potentially exacerbates the inequalities in the EV adoption process. Therefore, future EVCI planning needs to prioritize residential charging access, and community-level charger expansion should consider neighborhood-specific needs and readiness. Importantly, our proposed assessment framework can be applied to support nationwide transportation electrification efforts.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"121 ","pages":"Article 106193"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221067072500071X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transportation electrification has emerged as a critical strategy for mitigating greenhouse gas emissions, yet recent studies have indicated multifaceted injustices in adopting electric vehicles (EVs). One key issue is the equitable planning of public electric vehicle charging infrastructure (EVCI), which is essential for promoting widespread EV use. While existing research predominantly focuses on measuring accessibility, limited attention has been given to equity assessment based on urban social typologies. This study examined EVCI distribution in King County, Washington, using a three-step framework: First, we clustered six micro-urban typologies incorporating 17 socio-spatial indicators. Second, we measured and mapped charging capacity standardized rates across the county. Third, we identified key factors, examined how their influence varies geographically, and analyzed disparities by comparing specific clusters. Our findings show that the current distribution of charging stations is capacity-driven, favoring en-route recharging needs over longer-stay residential charging needs. This trend disproportionately affects underserved communities in southern King County, leaving large residential areas underinvested. This utilitarian distribution potentially exacerbates the inequalities in the EV adoption process. Therefore, future EVCI planning needs to prioritize residential charging access, and community-level charger expansion should consider neighborhood-specific needs and readiness. Importantly, our proposed assessment framework can be applied to support nationwide transportation electrification efforts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Cities and Society
Sustainable Cities and Society Social Sciences-Geography, Planning and Development
CiteScore
22.00
自引率
13.70%
发文量
810
审稿时长
27 days
期刊介绍: Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including: 1. Smart cities and resilient environments; 2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management; 3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management); 4. Energy efficient, low/zero carbon, and green buildings/communities; 5. Climate change mitigation and adaptation in urban environments; 6. Green infrastructure and BMPs; 7. Environmental Footprint accounting and management; 8. Urban agriculture and forestry; 9. ICT, smart grid and intelligent infrastructure; 10. Urban design/planning, regulations, legislation, certification, economics, and policy; 11. Social aspects, impacts and resiliency of cities; 12. Behavior monitoring, analysis and change within urban communities; 13. Health monitoring and improvement; 14. Nexus issues related to sustainable cities and societies; 15. Smart city governance; 16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society; 17. Big data, machine learning, and artificial intelligence applications and case studies; 18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems. 19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management; 20. Waste reduction and recycling; 21. Wastewater collection, treatment and recycling; 22. Smart, clean and healthy transportation systems and infrastructure;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信