{"title":"Self-healing packaging films/coatings for food applications; an emerging strategy","authors":"Milad Tavassoli , Wanli Zhang , Elham Assadpour , Fuyuan Zhang , Seid Mahdi Jafari","doi":"10.1016/j.cis.2025.103423","DOIUrl":null,"url":null,"abstract":"<div><div>Food packaging (FP) plays a crucial role in maintaining food quality, and the integrity of FP is directly linked to its barrier properties, which ultimately affects the preservation ability of FP materials. Therefore, incorporation of self-healing (SH) properties has emerged as an intriguing approach to enhance the performance of FP materials. Materials possessing SH properties can sustain their integrity through dynamic covalent bonds and/or non-covalent interactions, thereby continuously preserving the barrier properties of FP materials. In this study, our focus lies in exploring SH materials for FP films/coatings. We provide a summary of the mechanisms underlying biopolymeric SH materials, discuss the preparation methods for biopolymeric SH FP films/coatings, and present the latest advancements in their application for food preservation. Finally, we outline the future opportunities and challenges associated with the application of SH materials in FP.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"339 ","pages":"Article 103423"},"PeriodicalIF":15.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000186862500034X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Food packaging (FP) plays a crucial role in maintaining food quality, and the integrity of FP is directly linked to its barrier properties, which ultimately affects the preservation ability of FP materials. Therefore, incorporation of self-healing (SH) properties has emerged as an intriguing approach to enhance the performance of FP materials. Materials possessing SH properties can sustain their integrity through dynamic covalent bonds and/or non-covalent interactions, thereby continuously preserving the barrier properties of FP materials. In this study, our focus lies in exploring SH materials for FP films/coatings. We provide a summary of the mechanisms underlying biopolymeric SH materials, discuss the preparation methods for biopolymeric SH FP films/coatings, and present the latest advancements in their application for food preservation. Finally, we outline the future opportunities and challenges associated with the application of SH materials in FP.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.