Application of IoT and blockchain technology in the integration of innovation and industrial chains in high-tech manufacturing

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Zepei Li , Peng Zheng , Yanjia Tian
{"title":"Application of IoT and blockchain technology in the integration of innovation and industrial chains in high-tech manufacturing","authors":"Zepei Li ,&nbsp;Peng Zheng ,&nbsp;Yanjia Tian","doi":"10.1016/j.aej.2025.01.020","DOIUrl":null,"url":null,"abstract":"<div><div>In industrial IoT (Internet of Things) environments, accurate anomaly detection and high-quality data management are crucial yet challenging due to noisy and incomplete sensor data. This study introduces BD-IoTQNet, a novel framework designed to address these challenges by integrating data fusion, anomaly detection using the Isolation Forest algorithm, and blockchain-enabled DQM (Data Quality Management). The framework leverages blockchain technology to ensure data transparency and security, while smart contracts automate exception handling to enhance efficiency. Experiments conducted on the NASA Turbofan Engine Degradation and UCI Hydraulic Systems datasets demonstrate that BD-IoTQNet outperforms existing models in accuracy, precision, and data quality improvement, with reduced latency and enhanced robustness under noisy and missing data conditions. An ablation study validates the critical role of each component, showing significant performance drops when modules like DQM or blockchain are excluded. These findings highlight BD-IoTQNet as an effective solution for improving anomaly detection, predictive maintenance, and operational efficiency in industrial IoT systems.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"119 ","pages":"Pages 465-477"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825000298","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In industrial IoT (Internet of Things) environments, accurate anomaly detection and high-quality data management are crucial yet challenging due to noisy and incomplete sensor data. This study introduces BD-IoTQNet, a novel framework designed to address these challenges by integrating data fusion, anomaly detection using the Isolation Forest algorithm, and blockchain-enabled DQM (Data Quality Management). The framework leverages blockchain technology to ensure data transparency and security, while smart contracts automate exception handling to enhance efficiency. Experiments conducted on the NASA Turbofan Engine Degradation and UCI Hydraulic Systems datasets demonstrate that BD-IoTQNet outperforms existing models in accuracy, precision, and data quality improvement, with reduced latency and enhanced robustness under noisy and missing data conditions. An ablation study validates the critical role of each component, showing significant performance drops when modules like DQM or blockchain are excluded. These findings highlight BD-IoTQNet as an effective solution for improving anomaly detection, predictive maintenance, and operational efficiency in industrial IoT systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信