Addressing temperature challenges in machining: Deep-eutectic metalworking fluids and their influence on surface integrity

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Erik Abbá , Alistair Speidel , Zhirong Liao , Donka Novovic , Dragos Axinte
{"title":"Addressing temperature challenges in machining: Deep-eutectic metalworking fluids and their influence on surface integrity","authors":"Erik Abbá ,&nbsp;Alistair Speidel ,&nbsp;Zhirong Liao ,&nbsp;Donka Novovic ,&nbsp;Dragos Axinte","doi":"10.1016/j.matdes.2025.113690","DOIUrl":null,"url":null,"abstract":"<div><div>In manufacturing, cutting tools and component integrity are subjected to high-performance thresholds. The role of cutting fluids is pivotal in mitigating heat generation and friction at the tool-workpiece interface. This study explores the application of specifically designed, unconventional, and eco-friendly media, Deep-Eutectic Fluids (DEFs), which provide optimized fluid delivery to the cutting zone, regulating lubrication and cooling, while maintaining the surface integrity of the machined parts. To benchmark DEFs against traditional material removal methods, including dry, and wet (emulsion-based, Hocut 3380) processes, grinding was selected due to its thermal and lubrication demands. The results indicate that DEFs reduce the formation of severely deformed layers by 47% in comparison to conventional water-based coolants exhibiting superior lubricity, yielding more consistent deformation profiles and lower surface roughness. The generated residual stresses are closely comparable to those achieved using water-based metalworking fluids. This was substantiated by micromechanical testing, revealing a coherent failure mechanism at the machined edges for both DEF and wet-cutting media, significantly mitigating the adverse effects of dry machining. These findings highlight DEFs’ potential for industrial-scale adoption as a sustainable alternative in material removal processes, underscoring their capability to enhance process efficiency and environmental sustainability, or as an in-field portable cutting fluid.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"251 ","pages":"Article 113690"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525001108","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In manufacturing, cutting tools and component integrity are subjected to high-performance thresholds. The role of cutting fluids is pivotal in mitigating heat generation and friction at the tool-workpiece interface. This study explores the application of specifically designed, unconventional, and eco-friendly media, Deep-Eutectic Fluids (DEFs), which provide optimized fluid delivery to the cutting zone, regulating lubrication and cooling, while maintaining the surface integrity of the machined parts. To benchmark DEFs against traditional material removal methods, including dry, and wet (emulsion-based, Hocut 3380) processes, grinding was selected due to its thermal and lubrication demands. The results indicate that DEFs reduce the formation of severely deformed layers by 47% in comparison to conventional water-based coolants exhibiting superior lubricity, yielding more consistent deformation profiles and lower surface roughness. The generated residual stresses are closely comparable to those achieved using water-based metalworking fluids. This was substantiated by micromechanical testing, revealing a coherent failure mechanism at the machined edges for both DEF and wet-cutting media, significantly mitigating the adverse effects of dry machining. These findings highlight DEFs’ potential for industrial-scale adoption as a sustainable alternative in material removal processes, underscoring their capability to enhance process efficiency and environmental sustainability, or as an in-field portable cutting fluid.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信