Microbial signatures and therapeutic strategies in neurodegenerative diseases

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Mlaak Rob , Mahmoud Yousef , Arun Prasath Lakshmanan , Anns Mahboob , Annalisa Terranegra , Ali Chaari
{"title":"Microbial signatures and therapeutic strategies in neurodegenerative diseases","authors":"Mlaak Rob ,&nbsp;Mahmoud Yousef ,&nbsp;Arun Prasath Lakshmanan ,&nbsp;Anns Mahboob ,&nbsp;Annalisa Terranegra ,&nbsp;Ali Chaari","doi":"10.1016/j.biopha.2025.117905","DOIUrl":null,"url":null,"abstract":"<div><div>Neurodegenerative diseases (NDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), arise from complex interactions between genetic factors, environmental exposures, and aging. Additionally, gut dysbiosis has been linked to systemic inflammation and neurodegeneration. Advances in microbiome and metabolome profiling techniques have provided deeper insights into how alterations in gut microbiota and dietary patterns affect metabolic pathways and contribute to the progression of NDs. This review explores the profiles of gut microbiome and metabolome derived biomarkers and their roles in NDs. Across phyla, families, and genera, we identified 55 microbial alterations in PD, 24 in AD, 4 in ALS, and 17 in MS. Some notable results include an increase in <em>Akkermansia</em> in PD, AD, and MS and a decrease in short-chain fatty acids (SCFAs) in PD and AD. We examined the effects of probiotics, prebiotics, fecal microbiota transplants (FMT), sleep, exercise, and diet on the microbiota, all of which contributed to delayed onset and alleviation of symptoms. Further, artificial intelligence (AI) and machine learning (ML) algorithms applied to omics data have been crucial in identifying novel therapeutic targets, diagnosing and predicting prognosis, and enabling personalized medicine using microbiota-modulating therapies in NDs patients.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"184 ","pages":"Article 117905"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S075333222500099X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases (NDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), arise from complex interactions between genetic factors, environmental exposures, and aging. Additionally, gut dysbiosis has been linked to systemic inflammation and neurodegeneration. Advances in microbiome and metabolome profiling techniques have provided deeper insights into how alterations in gut microbiota and dietary patterns affect metabolic pathways and contribute to the progression of NDs. This review explores the profiles of gut microbiome and metabolome derived biomarkers and their roles in NDs. Across phyla, families, and genera, we identified 55 microbial alterations in PD, 24 in AD, 4 in ALS, and 17 in MS. Some notable results include an increase in Akkermansia in PD, AD, and MS and a decrease in short-chain fatty acids (SCFAs) in PD and AD. We examined the effects of probiotics, prebiotics, fecal microbiota transplants (FMT), sleep, exercise, and diet on the microbiota, all of which contributed to delayed onset and alleviation of symptoms. Further, artificial intelligence (AI) and machine learning (ML) algorithms applied to omics data have been crucial in identifying novel therapeutic targets, diagnosing and predicting prognosis, and enabling personalized medicine using microbiota-modulating therapies in NDs patients.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信