DockCADD: A streamlined in silico pipeline for the identification of potent ribosomal S6 Kinase 2 (RSK2) inhibitors

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
El Mehdi Karim , Meriem Khedraoui , Abdelkbir Errougui , Yasir S. Raouf , Abdelouahid Samadi , Samir Chtita
{"title":"DockCADD: A streamlined in silico pipeline for the identification of potent ribosomal S6 Kinase 2 (RSK2) inhibitors","authors":"El Mehdi Karim ,&nbsp;Meriem Khedraoui ,&nbsp;Abdelkbir Errougui ,&nbsp;Yasir S. Raouf ,&nbsp;Abdelouahid Samadi ,&nbsp;Samir Chtita","doi":"10.1016/j.sciaf.2025.e02581","DOIUrl":null,"url":null,"abstract":"<div><div>The search for innovative therapeutic strategies remains critical in addressing cancer, one of the leading global health challenges. Ribosomal S6 Kinase 2 (RSK2), a serine/threonine kinase, has emerged as a promising target for cancer therapy because it is implicated in oncogenic signaling. Herein, we developed an open-source computational pipeline, identified as DockCADD (available at <span><span>https://github.com/mehdikariim/DockCADD</span><svg><path></path></svg></span>), which enables the identification of potent RSK2 inhibitors by automated virtual screening, ADME-Tox profiling, and molecular dynamics (MD) simulations. Employing pyran derivatives as the scaffold, top-scoring inhibitors as identified by the pipeline showed scores ranging from -9.46 to -9.89 kcal/mol and binding free energies ranging from -53.731 to -55.193 kcal/mol. Ligands L1, L2 and L3 showed stable binding within the ATP-binding pocket, wherein the compounds undergo slight structural distortions with a favorable van der Waal's interaction. The ligand L3 has exhibited the highest MM-GBSA binding free energy (-55.193 kcal/mol), which so far presents the most promising candidate. These results have pointed out the use of DockCADD as an efficient tool for the fast and low-cost process of drug discovery; L1–L3 should be further validated experimentally for cancer therapy.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"27 ","pages":"Article e02581"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625000523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The search for innovative therapeutic strategies remains critical in addressing cancer, one of the leading global health challenges. Ribosomal S6 Kinase 2 (RSK2), a serine/threonine kinase, has emerged as a promising target for cancer therapy because it is implicated in oncogenic signaling. Herein, we developed an open-source computational pipeline, identified as DockCADD (available at https://github.com/mehdikariim/DockCADD), which enables the identification of potent RSK2 inhibitors by automated virtual screening, ADME-Tox profiling, and molecular dynamics (MD) simulations. Employing pyran derivatives as the scaffold, top-scoring inhibitors as identified by the pipeline showed scores ranging from -9.46 to -9.89 kcal/mol and binding free energies ranging from -53.731 to -55.193 kcal/mol. Ligands L1, L2 and L3 showed stable binding within the ATP-binding pocket, wherein the compounds undergo slight structural distortions with a favorable van der Waal's interaction. The ligand L3 has exhibited the highest MM-GBSA binding free energy (-55.193 kcal/mol), which so far presents the most promising candidate. These results have pointed out the use of DockCADD as an efficient tool for the fast and low-cost process of drug discovery; L1–L3 should be further validated experimentally for cancer therapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信