Magnetic Properties, Spin-Vibration Couplings, and Temperature Effects in Phenalenyl and Triangulene

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Alicia Omist, Antonio Cebreiro-Gallardo, Matt Hugget, Roberto A. Boto and David Casanova*, 
{"title":"Magnetic Properties, Spin-Vibration Couplings, and Temperature Effects in Phenalenyl and Triangulene","authors":"Alicia Omist,&nbsp;Antonio Cebreiro-Gallardo,&nbsp;Matt Hugget,&nbsp;Roberto A. Boto and David Casanova*,&nbsp;","doi":"10.1021/acs.jctc.4c0125510.1021/acs.jctc.4c01255","DOIUrl":null,"url":null,"abstract":"<p >We introduce a computational methodology for evaluating and analyzing spin-vibration couplings in molecular systems, enabling insights into the interplay between electronic spins and molecular vibrations. By mapping ab initio electronic structure calculations onto molecular spin Hamiltonians, our approach captures those vibrational interactions potentially driving spin relaxation process. Spin-vibration couplings, derived from Holstein and Peierls terms, highlight the pivotal role of vibrational mode symmetry in spin decoherence and efficient energy dissipation. Additionally, second-order couplings provide a framework to explore the temperature dependence of spin properties via the thermal population of higher vibrational levels. Applied to phenalenyl and [3]triangulene, the results indicate that direct spin transitions dominate over Orbach relaxation in both systems. Hyperfine interactions primarily dictate spin-vibration couplings and thermal effects in phenalenyl, whereas zero-field splitting contributions are dominant in [3]triangulene. These findings advance the understanding of spin relaxation mechanisms in organic molecular systems.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 3","pages":"1153–1162 1153–1162"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c01255","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a computational methodology for evaluating and analyzing spin-vibration couplings in molecular systems, enabling insights into the interplay between electronic spins and molecular vibrations. By mapping ab initio electronic structure calculations onto molecular spin Hamiltonians, our approach captures those vibrational interactions potentially driving spin relaxation process. Spin-vibration couplings, derived from Holstein and Peierls terms, highlight the pivotal role of vibrational mode symmetry in spin decoherence and efficient energy dissipation. Additionally, second-order couplings provide a framework to explore the temperature dependence of spin properties via the thermal population of higher vibrational levels. Applied to phenalenyl and [3]triangulene, the results indicate that direct spin transitions dominate over Orbach relaxation in both systems. Hyperfine interactions primarily dictate spin-vibration couplings and thermal effects in phenalenyl, whereas zero-field splitting contributions are dominant in [3]triangulene. These findings advance the understanding of spin relaxation mechanisms in organic molecular systems.

Abstract Image

酚醛和三角烯的磁性、自旋振动耦合和温度效应
我们介绍了一种计算方法来评估和分析分子系统中的自旋-振动耦合,从而深入了解电子自旋和分子振动之间的相互作用。通过将从头算电子结构计算映射到分子自旋哈密顿量上,我们的方法捕获了那些可能驱动自旋弛豫过程的振动相互作用。从Holstein和Peierls术语推导出的自旋振动耦合强调了振动模对称在自旋退相干和有效能量耗散中的关键作用。此外,二阶耦合提供了一个框架,通过高振动能级的热居来探索自旋特性的温度依赖性。应用于苯烯和[3]三角烯,结果表明,在这两个体系中,直接自旋跃迁主导了奥巴赫弛豫。超精细相互作用主要决定了苯烯中的自旋振动耦合和热效应,而零场分裂在[3]三角烯中占主导地位。这些发现促进了对有机分子体系中自旋弛豫机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信