{"title":"Interleaflet Translocation of Second-Harmonic-Generation-Active Dye Molecules in Phospholipid Bilayers with Transmembrane Pores","authors":"Taiki Shigematsu*, Yuya Shinoda, Reiya Takagi, Yoshihiro Ujihara, Shukei Sugita and Masanori Nakamura, ","doi":"10.1021/acs.langmuir.4c0394310.1021/acs.langmuir.4c03943","DOIUrl":null,"url":null,"abstract":"<p >Second harmonic generation (SHG) measurements using SHG-active dye molecules have recently attracted attention as a method to detect the formation of pores in phospholipid bilayers. The bilayers, in which the dye molecules are embedded in the outer leaflet, exhibit a noncentrosymmetric structure, generating SHG signals. However, when pores form, these dye molecules translocate through the pores into the inner leaflet, leading to a more centrosymmetric structure and the subsequent loss of the SHG signals. A decrease in the SHG signals has been experimentally observed in membranes subjected to electrical stimuli. However, the characteristics of the interleaflet translocation of SHG-active dye molecules through pores remain unclear, hindering quantitative estimation of the membrane conditions, such as the pore size and density, based on the SHG signal reduction. In this study, we investigated the interleaflet translocation characteristics of Ap3, an SHG-active dye molecule, using molecular dynamics (MD) simulations and two-dimensional random-walk (RW) simulations. The MD simulations revealed that Ap3 molecules only translocate between the leaflets along the pore sidewalls. We determined the lateral diffusion coefficient of Ap3 within the membrane plane and its propensity for interleaflet movement at the pore wall. Based on these movement characteristics, the RW model successfully reproduced the characteristic time scale of the interleaflet translocation observed in the MD simulations. By varying the pore size and density in the RW simulations, we estimated that the characteristic time scale of interleaflet translocation depends on the −0.31 power of the pore radius and the −1.13 power of the pore density. Using these findings, we estimated the number of pores that probably formed in membranes during previous electroporation experiments. These results indicate the potential of optical measurement of the dye molecule movement for the indirect quantitative estimation of the pore size and number, which are challenging to measure optically.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 5","pages":"3209–3219 3209–3219"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.langmuir.4c03943","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c03943","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Second harmonic generation (SHG) measurements using SHG-active dye molecules have recently attracted attention as a method to detect the formation of pores in phospholipid bilayers. The bilayers, in which the dye molecules are embedded in the outer leaflet, exhibit a noncentrosymmetric structure, generating SHG signals. However, when pores form, these dye molecules translocate through the pores into the inner leaflet, leading to a more centrosymmetric structure and the subsequent loss of the SHG signals. A decrease in the SHG signals has been experimentally observed in membranes subjected to electrical stimuli. However, the characteristics of the interleaflet translocation of SHG-active dye molecules through pores remain unclear, hindering quantitative estimation of the membrane conditions, such as the pore size and density, based on the SHG signal reduction. In this study, we investigated the interleaflet translocation characteristics of Ap3, an SHG-active dye molecule, using molecular dynamics (MD) simulations and two-dimensional random-walk (RW) simulations. The MD simulations revealed that Ap3 molecules only translocate between the leaflets along the pore sidewalls. We determined the lateral diffusion coefficient of Ap3 within the membrane plane and its propensity for interleaflet movement at the pore wall. Based on these movement characteristics, the RW model successfully reproduced the characteristic time scale of the interleaflet translocation observed in the MD simulations. By varying the pore size and density in the RW simulations, we estimated that the characteristic time scale of interleaflet translocation depends on the −0.31 power of the pore radius and the −1.13 power of the pore density. Using these findings, we estimated the number of pores that probably formed in membranes during previous electroporation experiments. These results indicate the potential of optical measurement of the dye molecule movement for the indirect quantitative estimation of the pore size and number, which are challenging to measure optically.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).