Morphology-Driven Bifunctional Activity of Layered Birnessite-Based Materials toward Oxygen Electrocatalysis

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Rajesh K. Behera, Alaka P. Sahoo, Debidutta Das, Amarendra Nayak, Sikha Sayantani, Debasis Jena, Swarna P. Mantry and Kumar S. K. Varadwaj*, 
{"title":"Morphology-Driven Bifunctional Activity of Layered Birnessite-Based Materials toward Oxygen Electrocatalysis","authors":"Rajesh K. Behera,&nbsp;Alaka P. Sahoo,&nbsp;Debidutta Das,&nbsp;Amarendra Nayak,&nbsp;Sikha Sayantani,&nbsp;Debasis Jena,&nbsp;Swarna P. Mantry and Kumar S. K. Varadwaj*,&nbsp;","doi":"10.1021/acsomega.4c0550010.1021/acsomega.4c05500","DOIUrl":null,"url":null,"abstract":"<p >The chemical, structural, and morphological diversity of birnessite, a 2D layered MnO<sub>2</sub>, has opened avenues for its application as an electrocatalyst toward both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Among pristine birnessites prepared by different methods, the freestanding flakes (primary structure) obtained from molten salt (MS-KMnO) showed remarkable bifunctional activity as compared to samples with thicker plates or a hierarchical honeycomb-like (type-I secondary structure) morphology. While the ORR onset potential (<i>E</i><sub>onset</sub>) and halfwave potential (<i>E</i><sub>1/2</sub>) for MS-KMnO were recorded at 0.89 and 0.81 V vs RHE, respectively, the OER overpotential (η) was found to be 300 mV. We demonstrated heat-induced secondary structure evolution by modification of the molten salt method, which led to a decrease in activity. In contrast to previous studies, the Co-doped birnessite (Co-KMnO) prepared in molten salt showed lower bifunctional activity (ORR, <i>E</i><sub>1/2</sub> = 0.72 V; OER, η= 460 mV) as compared to MS-KMnO. Co-KMnO showed an interwoven wrinkled sheet-like (type-II secondary structure) morphology, with Co<sup>3+</sup> present in both the in-layer and the interlayer. However, in Co-KMnO/360 prepared at a lower reaction temperature, the areal coverage of the type-II structure reduces, leading to an increase in ORR (<i>E</i><sub>1/2</sub> = 0.76 V) and OER (η = 440 mV) activity. The chronopotentiometry for 100 h at a constant OER current of 50 mA cm<sup>–2</sup> showed an increase in potential from 1.62 to 1.89 V and the characterization of the sample post-treatment showed degradation of the layered structure in MS-KMnO. The samples obtained after 1000 CV cycles in both the ORR and the OER regions showed the formation of secondary structures with a substantial decrease in the Mn<sup>3+</sup>/Mn<sup>4+</sup> ratio. This study demonstrates that morphology tuning within the 2D birnessite system has a marked effect on its bifunctional activity.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 5","pages":"4248–4260 4248–4260"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05500","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05500","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The chemical, structural, and morphological diversity of birnessite, a 2D layered MnO2, has opened avenues for its application as an electrocatalyst toward both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Among pristine birnessites prepared by different methods, the freestanding flakes (primary structure) obtained from molten salt (MS-KMnO) showed remarkable bifunctional activity as compared to samples with thicker plates or a hierarchical honeycomb-like (type-I secondary structure) morphology. While the ORR onset potential (Eonset) and halfwave potential (E1/2) for MS-KMnO were recorded at 0.89 and 0.81 V vs RHE, respectively, the OER overpotential (η) was found to be 300 mV. We demonstrated heat-induced secondary structure evolution by modification of the molten salt method, which led to a decrease in activity. In contrast to previous studies, the Co-doped birnessite (Co-KMnO) prepared in molten salt showed lower bifunctional activity (ORR, E1/2 = 0.72 V; OER, η= 460 mV) as compared to MS-KMnO. Co-KMnO showed an interwoven wrinkled sheet-like (type-II secondary structure) morphology, with Co3+ present in both the in-layer and the interlayer. However, in Co-KMnO/360 prepared at a lower reaction temperature, the areal coverage of the type-II structure reduces, leading to an increase in ORR (E1/2 = 0.76 V) and OER (η = 440 mV) activity. The chronopotentiometry for 100 h at a constant OER current of 50 mA cm–2 showed an increase in potential from 1.62 to 1.89 V and the characterization of the sample post-treatment showed degradation of the layered structure in MS-KMnO. The samples obtained after 1000 CV cycles in both the ORR and the OER regions showed the formation of secondary structures with a substantial decrease in the Mn3+/Mn4+ ratio. This study demonstrates that morphology tuning within the 2D birnessite system has a marked effect on its bifunctional activity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信