Nonaqueous G-Quadruplex Ionogels

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zeyi Wang, Yuzhen Qian, Guozhen Wang, Xinyu Sun and Jingcheng Hao*, 
{"title":"Nonaqueous G-Quadruplex Ionogels","authors":"Zeyi Wang,&nbsp;Yuzhen Qian,&nbsp;Guozhen Wang,&nbsp;Xinyu Sun and Jingcheng Hao*,&nbsp;","doi":"10.1021/acs.langmuir.4c0481010.1021/acs.langmuir.4c04810","DOIUrl":null,"url":null,"abstract":"<p >Supramolecular ionogels, as an emerging class of materials, utilize the intriguing properties of ionic liquids (ILs) and offer a promising method for constructing functional materials in anhydrous solvents. G-Quadruplex, assembled from guanine-rich nucleic acid building blocks, is an important structure closely associated with life and leads to the gelation for constructing versatile materials, such as the electrolytes of supercapacitors. Herein, we design and fabricate G-quadruplex ionogels using an unreported cation. Among the metal acetylacetonates under investigation, iron(III) acetylacetonate is distinctive in its capacity to stabilize G-quadruplexes through a reaction with the solvent ethylammonium nitrate (EAN), resulting in the formation of Fe(acac)<sup>2+</sup>. The ionogel displays high ionic conductivity (6.43 mS·cm<sup>–1</sup>), a wide electrochemical stability window (2.86 V), and self-healing properties. The supercapacitor based on the G-quadruplex ionogel electrolyte delivers a gravimetric capacitance of 91.8 F·g<sup>–1</sup>, a high energy density of 32.6 W h/kg, and a power density of 319.8 W/kg at a current density of 0.2A·g<sup>–1</sup>. Therefore, the present findings have important implications for deepening the understanding of G-quadruplex structures and metal acetylacetonate complexes and provide an approach to fabricating ionogel electrolytes for high-performance supercapacitors.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 5","pages":"3635–3642 3635–3642"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04810","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supramolecular ionogels, as an emerging class of materials, utilize the intriguing properties of ionic liquids (ILs) and offer a promising method for constructing functional materials in anhydrous solvents. G-Quadruplex, assembled from guanine-rich nucleic acid building blocks, is an important structure closely associated with life and leads to the gelation for constructing versatile materials, such as the electrolytes of supercapacitors. Herein, we design and fabricate G-quadruplex ionogels using an unreported cation. Among the metal acetylacetonates under investigation, iron(III) acetylacetonate is distinctive in its capacity to stabilize G-quadruplexes through a reaction with the solvent ethylammonium nitrate (EAN), resulting in the formation of Fe(acac)2+. The ionogel displays high ionic conductivity (6.43 mS·cm–1), a wide electrochemical stability window (2.86 V), and self-healing properties. The supercapacitor based on the G-quadruplex ionogel electrolyte delivers a gravimetric capacitance of 91.8 F·g–1, a high energy density of 32.6 W h/kg, and a power density of 319.8 W/kg at a current density of 0.2A·g–1. Therefore, the present findings have important implications for deepening the understanding of G-quadruplex structures and metal acetylacetonate complexes and provide an approach to fabricating ionogel electrolytes for high-performance supercapacitors.

Abstract Image

非水g -四价离子凝胶
超分子离子凝胶作为一类新兴的材料,利用离子液体的独特性质,为在无水溶剂中构建功能材料提供了一种很有前景的方法。g -四重体由富含鸟嘌呤的核酸构建块组装而成,是一种与生命密切相关的重要结构,并导致凝胶化,用于构建多功能材料,如超级电容器的电解质。在此,我们使用未报道的阳离子设计和制造了g -四重离子凝胶。在研究的金属乙酰丙酮酸酯中,乙酰丙酮铁(III)通过与溶剂硝酸乙胺(EAN)反应,形成Fe(acac)2+,从而稳定g -四萜化合物的能力是独特的。离子凝胶具有高离子电导率(6.43 mS·cm-1)、宽电化学稳定窗口(2.86 V)和自愈特性。在电流密度为0.2A·g-1时,基于g -四重离子凝胶电解质的超级电容器的重量电容为91.8 F·g-1,高能量密度为32.6 W h/kg,功率密度为319.8 W/kg。因此,本研究结果对深化对g -四联体结构和金属乙酰丙酮配合物的理解具有重要意义,并为制备高性能超级电容器用离子凝胶电解质提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信