Synergy-Promoted Specific Alkyltriphenylphosphonium Binding to CB[8]

IF 3.3 2区 化学 Q1 CHEMISTRY, ORGANIC
Mauro Díaz-Abellás, Iago Neira, Arturo Blanco-Gómez, Carlos Peinador, Marcos D. García
{"title":"Synergy-Promoted Specific Alkyltriphenylphosphonium Binding to CB[8]","authors":"Mauro Díaz-Abellás, Iago Neira, Arturo Blanco-Gómez, Carlos Peinador, Marcos D. García","doi":"10.1021/acs.joc.4c02546","DOIUrl":null,"url":null,"abstract":"Biological substrate specificity ensures that organisms interact accurately with biomolecular receptors, crucial for key functions such as signaling and immunity. Nevertheless, this phenomenon is still poorly understood, with host–guest chemistry offering a suitable platform for studying simplified models. Herein, we report an in-depth study of the host–guest chemistry of alkyltriphenylphosphonium cations with cucurbit[8]uril (CB[8]), initiated by the serendipitous discovery of salt forming a tightly bound pseudoheteroternary 1:1 complex with CB[8]. A first generation of model substrates was designed to explore an unusual binding mode characterized by the simultaneous introduction of two distinct guest fragments within the host cavity. Structural features of the complexes were elucidated using ESI-MS and NMR 1D/2D techniques; thermodynamic properties were assessed by isothermal titration calorimetry, and kinetic parameters were derived from selective inversion–recovery NMR. Experimental results aligned well with electronic structure calculations, revealing a reproducible binding motif with submicromolar affinities. This peculiar complexation mode involves a synergistic effect caused by steric crowding around the P<sup>+</sup> atom, facilitating the insertion of two aromatic units into CB[8] while hindering association with CB[7]. Based on these findings, a second generation of minimalistic substrates was developed, preserving the synergistic interaction mode and exhibiting specific binding to CB[8].","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"41 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c02546","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Biological substrate specificity ensures that organisms interact accurately with biomolecular receptors, crucial for key functions such as signaling and immunity. Nevertheless, this phenomenon is still poorly understood, with host–guest chemistry offering a suitable platform for studying simplified models. Herein, we report an in-depth study of the host–guest chemistry of alkyltriphenylphosphonium cations with cucurbit[8]uril (CB[8]), initiated by the serendipitous discovery of salt forming a tightly bound pseudoheteroternary 1:1 complex with CB[8]. A first generation of model substrates was designed to explore an unusual binding mode characterized by the simultaneous introduction of two distinct guest fragments within the host cavity. Structural features of the complexes were elucidated using ESI-MS and NMR 1D/2D techniques; thermodynamic properties were assessed by isothermal titration calorimetry, and kinetic parameters were derived from selective inversion–recovery NMR. Experimental results aligned well with electronic structure calculations, revealing a reproducible binding motif with submicromolar affinities. This peculiar complexation mode involves a synergistic effect caused by steric crowding around the P+ atom, facilitating the insertion of two aromatic units into CB[8] while hindering association with CB[7]. Based on these findings, a second generation of minimalistic substrates was developed, preserving the synergistic interaction mode and exhibiting specific binding to CB[8].

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Organic Chemistry
Journal of Organic Chemistry 化学-有机化学
CiteScore
6.20
自引率
11.10%
发文量
1467
审稿时长
2 months
期刊介绍: Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信