Harnessing Amino Acid Modularity for Programmable Function in Covalent Peptide Assemblies

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yun-Mi Hur, Kyoung-Ik Min
{"title":"Harnessing Amino Acid Modularity for Programmable Function in Covalent Peptide Assemblies","authors":"Yun-Mi Hur, Kyoung-Ik Min","doi":"10.1002/adma.202419941","DOIUrl":null,"url":null,"abstract":"Covalent peptide assembly leverages robust covalent bonds and dynamic non-covalent interactions to provide enhanced stability and introduce diverse functionalities. Nevertheless, it remains significantly challenging to achieve modular control over the structural diversity and functional complexity while elucidating how specific amino acid sequences contribute to these processes. Here, the systematic encoding of peptide derivative characteristics is demonstrated through amino acid modularity to enable precise control over both the structural diversity and functional complexity in covalent peptide assemblies. By systematically screening single amino acid substitutions in pentapeptides using tyrosine crosslinking, a diverse library of peptide constructs is developed. Each construct is tailored to exhibit distinct properties, including charge repulsion, aggregation-induced quenching, disassembly behavior, and redox responsiveness. The strategic manipulation of sequence composition, both in individual assemblies and combinatorial systems, enables programmable control over the structural diversity and functional complexity. This approach yields various module-specific functions, including frustrated growth, hierarchical hollow architecture formation, affinity enrichment, stimuli-responsive behavior, and fluorescence signal amplification. This work establishes a framework for the design of modular peptide materials with programmable functionalities, advancing the development of next-generation multicomponent peptide assembly technologies characterized by unprecedented complexity and adaptability.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"29 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419941","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent peptide assembly leverages robust covalent bonds and dynamic non-covalent interactions to provide enhanced stability and introduce diverse functionalities. Nevertheless, it remains significantly challenging to achieve modular control over the structural diversity and functional complexity while elucidating how specific amino acid sequences contribute to these processes. Here, the systematic encoding of peptide derivative characteristics is demonstrated through amino acid modularity to enable precise control over both the structural diversity and functional complexity in covalent peptide assemblies. By systematically screening single amino acid substitutions in pentapeptides using tyrosine crosslinking, a diverse library of peptide constructs is developed. Each construct is tailored to exhibit distinct properties, including charge repulsion, aggregation-induced quenching, disassembly behavior, and redox responsiveness. The strategic manipulation of sequence composition, both in individual assemblies and combinatorial systems, enables programmable control over the structural diversity and functional complexity. This approach yields various module-specific functions, including frustrated growth, hierarchical hollow architecture formation, affinity enrichment, stimuli-responsive behavior, and fluorescence signal amplification. This work establishes a framework for the design of modular peptide materials with programmable functionalities, advancing the development of next-generation multicomponent peptide assembly technologies characterized by unprecedented complexity and adaptability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信