Rational Design of Methylated Triazine-Based Linear Conjugated Polymers for Efficient CO2 Photoreduction with Water

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiang Zhu, Na Yang, Li-An Zhou, Chengcheng Tian, Jiwei Wu, Tao Wang, Xiaodong Li, Xia Jiang, Sheng Dai
{"title":"Rational Design of Methylated Triazine-Based Linear Conjugated Polymers for Efficient CO2 Photoreduction with Water","authors":"Xiang Zhu, Na Yang, Li-An Zhou, Chengcheng Tian, Jiwei Wu, Tao Wang, Xiaodong Li, Xia Jiang, Sheng Dai","doi":"10.1002/adma.202417437","DOIUrl":null,"url":null,"abstract":"The development of semiconducting conjugated polymers for photoredox catalysis holds great promise for sustainable utilization of solar energy. Herein a new family of porous methylated triazine-based linear conjugated polymers is reported that enable efficient photoreduction of carbon dioxide (CO<sub>2</sub>) with water (H<sub>2</sub>O) vapor, in the absence of any additional photosensitizer, sacrificial agents or cocatalysts. It is demonstrated that the key lies in the generation of methylated triazine linkages through a facile condensation reaction between benzamidine and acetic anhydride, which impedes the formation of conventional triazine-based frameworks. It is also shown that regulating conjugated linear backbones with different lengths of electron-donated benzyl units provides a facile means to modulate their optical properties and the exciton dissociation, thereby affording more long-lived photogenerated charge carriers and boosting charge separation and transfer. A high-performance carbon monoxide (CO) production rate of 218.9 µmol g<sup>−1</sup> h<sup>−1</sup> is achieved with ≈ 100% CO selectivity, which is accompanied by exceptional H<sub>2</sub>O oxidation to oxygen (O<sub>2</sub>). It anticipates this new study will advance synthetic approaches toward polymeric semiconductors and facilitate new possibilities for triazine-based conjugated polymers with promising potential in artificial photocatalysis.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"23 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417437","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of semiconducting conjugated polymers for photoredox catalysis holds great promise for sustainable utilization of solar energy. Herein a new family of porous methylated triazine-based linear conjugated polymers is reported that enable efficient photoreduction of carbon dioxide (CO2) with water (H2O) vapor, in the absence of any additional photosensitizer, sacrificial agents or cocatalysts. It is demonstrated that the key lies in the generation of methylated triazine linkages through a facile condensation reaction between benzamidine and acetic anhydride, which impedes the formation of conventional triazine-based frameworks. It is also shown that regulating conjugated linear backbones with different lengths of electron-donated benzyl units provides a facile means to modulate their optical properties and the exciton dissociation, thereby affording more long-lived photogenerated charge carriers and boosting charge separation and transfer. A high-performance carbon monoxide (CO) production rate of 218.9 µmol g−1 h−1 is achieved with ≈ 100% CO selectivity, which is accompanied by exceptional H2O oxidation to oxygen (O2). It anticipates this new study will advance synthetic approaches toward polymeric semiconductors and facilitate new possibilities for triazine-based conjugated polymers with promising potential in artificial photocatalysis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信