Advances in conducting nanocomposite hydrogels for wearable biomonitoring

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Arpita Roy, Ronak Afshari, Saumya Jain, Yuting Zheng, Min-Hsuan Lin, Shea Zenkar, Junyi Yin, Jun Chen, Nicholas A. Peppas and Nasim Annabi
{"title":"Advances in conducting nanocomposite hydrogels for wearable biomonitoring","authors":"Arpita Roy, Ronak Afshari, Saumya Jain, Yuting Zheng, Min-Hsuan Lin, Shea Zenkar, Junyi Yin, Jun Chen, Nicholas A. Peppas and Nasim Annabi","doi":"10.1039/D4CS00220B","DOIUrl":null,"url":null,"abstract":"<p >Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 5","pages":" 2595-2652"},"PeriodicalIF":40.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cs/d4cs00220b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.

Abstract Image

Abstract Image

纳米复合水凝胶用于可穿戴生物监测的研究进展
可穿戴生物传感器和生物电子学的最新进展导致了个性化健康管理设备的创新设计,生物相容性导电纳米复合水凝胶成为软电子工程中有前途的基石。在这篇综述中,我们为使用这些工程纳米复合水凝胶推进生物传感器提供了一个全面的框架,强调了它们的独特特性,如高导电性、柔韧性、自修复、生物相容性、生物降解性和可调结构,拓宽了它们的生物医学应用。综述了纳米复合水凝胶在人体热传感、生物力学传感、电生理传感和生化传感等方面的主要性能,纳米复合水凝胶设计和合成的最新进展,以及柔性和可穿戴设备的最新开发技术。本文综述了各种传感器类型,包括应变、生理和电化学传感器,并探讨了它们在个性化医疗保健中的潜在应用,从日常活动监测到多功能电子皮肤应用。此外,我们还重点介绍了这些软器件的设计蓝图、工作程序、性能、检测限和灵敏度。最后,我们讨论了可穿戴传感器中先进纳米复合水凝胶的挑战、前景和未来展望,旨在全面概述其当前状态和未来在医疗保健应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信