Electrically Induced Negative Differential Resistance States Mediated by Oxygen Octahedra Coupling in Manganites for Neuronal Dynamics

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Azminul Jaman, Lorenzo Fratino, Majid Ahmadi, Rodolfo Rocco, Bart J. Kooi, Marcelo Rozenberg, Tamalika Banerjee
{"title":"Electrically Induced Negative Differential Resistance States Mediated by Oxygen Octahedra Coupling in Manganites for Neuronal Dynamics","authors":"Azminul Jaman, Lorenzo Fratino, Majid Ahmadi, Rodolfo Rocco, Bart J. Kooi, Marcelo Rozenberg, Tamalika Banerjee","doi":"10.1002/adfm.202419840","DOIUrl":null,"url":null,"abstract":"The precipitous rise of consumer network applications reiterates the urgency to redefine computing hardware with a low power footprint. Neuromorphic computing utilizing correlated oxides offers an energy-efficient solution. By designing anisotropic functional properties in LSMO on a twinned LAO substrate and driving it out of thermodynamic equilibrium, two distinct negative differential resistance states are demonstrated in such volatile memristors. These are harnessed to exhibit oscillatory dynamics in LSMO at different frequencies and an artificial neuron with leaky integrate-and-fire dynamics. A material-based modeling incorporating bond angle distortions in neighboring perovskites and capturing the inhomogeneity of domain distribution and propagation explains both the NDR regimes. The findings establish LSMO as an important material for neuromorphic computing hardware.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"88 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419840","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The precipitous rise of consumer network applications reiterates the urgency to redefine computing hardware with a low power footprint. Neuromorphic computing utilizing correlated oxides offers an energy-efficient solution. By designing anisotropic functional properties in LSMO on a twinned LAO substrate and driving it out of thermodynamic equilibrium, two distinct negative differential resistance states are demonstrated in such volatile memristors. These are harnessed to exhibit oscillatory dynamics in LSMO at different frequencies and an artificial neuron with leaky integrate-and-fire dynamics. A material-based modeling incorporating bond angle distortions in neighboring perovskites and capturing the inhomogeneity of domain distribution and propagation explains both the NDR regimes. The findings establish LSMO as an important material for neuromorphic computing hardware.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信