{"title":"Structural Influence on Exciton Formation and the Critical Role of Dark Excitons in Polymeric Carbon Nitrides","authors":"Changbin Im, Radim Beranek, Timo Jacob","doi":"10.1002/aenm.202405549","DOIUrl":null,"url":null,"abstract":"Polymeric carbon nitrides (PCNs) exhibit intriguing optical properties and exceptional performance in (photo)catalysis, optoelectronics, and energy storage. Nevertheless, the intricate phenomena involving light absorption, formation of long-lived excitons, photo-charging, and photochemical processes observed in PCNs remain poorly understood. This theoretical investigation elucidates the origin of distinct dark and bright excitons, their stability and lifetimes, and their correlation with the microstructural attributes of PCNs. Based on these results, the decisive role of dark excitons in photocatalytic reactivity is proposed, which underlies the experimentally observed differences in the photocatalytic performance of various PCN derivatives. This study thus establishes novel insights into the factors governing the light-driven processes in PCNs that can provide essential guidelines for rational design of PCNs with enhanced performance.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"12 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405549","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polymeric carbon nitrides (PCNs) exhibit intriguing optical properties and exceptional performance in (photo)catalysis, optoelectronics, and energy storage. Nevertheless, the intricate phenomena involving light absorption, formation of long-lived excitons, photo-charging, and photochemical processes observed in PCNs remain poorly understood. This theoretical investigation elucidates the origin of distinct dark and bright excitons, their stability and lifetimes, and their correlation with the microstructural attributes of PCNs. Based on these results, the decisive role of dark excitons in photocatalytic reactivity is proposed, which underlies the experimentally observed differences in the photocatalytic performance of various PCN derivatives. This study thus establishes novel insights into the factors governing the light-driven processes in PCNs that can provide essential guidelines for rational design of PCNs with enhanced performance.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.