A Strong and Water-Retaining Biomass Adhesive Inspired by Tofu

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiawei Shao, Qiumei Jing, Xinyi Li, Muhammad Wakil Shahzad, Shuaicheng Jiang, Xuehua Zhang, Shengbo Ge, Ben Bin Xu, Jianzhang Li
{"title":"A Strong and Water-Retaining Biomass Adhesive Inspired by Tofu","authors":"Jiawei Shao, Qiumei Jing, Xinyi Li, Muhammad Wakil Shahzad, Shuaicheng Jiang, Xuehua Zhang, Shengbo Ge, Ben Bin Xu, Jianzhang Li","doi":"10.1002/adfm.202424726","DOIUrl":null,"url":null,"abstract":"The poor mechanical strength and low water retention of biomass adhesives present significant challenges when substituting petrochemical adhesives in practical applications. Inspired by the colloidal gel structure in Tofu, the development of a high-performance protein-based adhesive derived from soybean meal (SM) oxidized by glucose oxidase (GOx) and calcium sulfate oligomer (CSO) is reported. The catalytic oxidation of sugars in SM by GOx produces active carboxyl groups, increasing active sites for calcium bridge (sugar-protein) formation in CSO. Concurrently, GOx disrupts the internal electrostatic equilibrium of SM, promoting the formation of an acid-induced colloidal gel-like network structure. This Tofu-like structures can effectively minimize water evaporation and significantly enhance the interfacial adhesion. Plywood bonded with the modified adhesive demonstrates a 129% increase in wet strength compared to unmodified counterparts. Additionally, the water loss rate of modified adhesive is reduced by 30.66% at 30 minutes, while maintaining 70.37% of its initial wet strength. This enzymatically mediated organic–inorganic hybrid structure represents a promising strategy for future development of sustainable biomass adhesives.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"26 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202424726","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The poor mechanical strength and low water retention of biomass adhesives present significant challenges when substituting petrochemical adhesives in practical applications. Inspired by the colloidal gel structure in Tofu, the development of a high-performance protein-based adhesive derived from soybean meal (SM) oxidized by glucose oxidase (GOx) and calcium sulfate oligomer (CSO) is reported. The catalytic oxidation of sugars in SM by GOx produces active carboxyl groups, increasing active sites for calcium bridge (sugar-protein) formation in CSO. Concurrently, GOx disrupts the internal electrostatic equilibrium of SM, promoting the formation of an acid-induced colloidal gel-like network structure. This Tofu-like structures can effectively minimize water evaporation and significantly enhance the interfacial adhesion. Plywood bonded with the modified adhesive demonstrates a 129% increase in wet strength compared to unmodified counterparts. Additionally, the water loss rate of modified adhesive is reduced by 30.66% at 30 minutes, while maintaining 70.37% of its initial wet strength. This enzymatically mediated organic–inorganic hybrid structure represents a promising strategy for future development of sustainable biomass adhesives.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信