Refining Ligand Poses in RNA/Ligand Complexes of Pharmaceutical Relevance: A Perspective by QM/MM Simulations and NMR Measurements

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Gia Linh Hoang, Manuel Röck, Aldo Tancredi, Thomas Magauer, Davide Mandelli, Jörg B. Schulz, Sybille Krauss, Giulia Rossetti, Martin Tollinger, Paolo Carloni
{"title":"Refining Ligand Poses in RNA/Ligand Complexes of Pharmaceutical Relevance: A Perspective by QM/MM Simulations and NMR Measurements","authors":"Gia Linh Hoang, Manuel Röck, Aldo Tancredi, Thomas Magauer, Davide Mandelli, Jörg B. Schulz, Sybille Krauss, Giulia Rossetti, Martin Tollinger, Paolo Carloni","doi":"10.1021/acs.jpclett.4c03456","DOIUrl":null,"url":null,"abstract":"Predicting the binding poses of ligands targeting RNAs is challenging. Here, we propose that using first-principles quantum mechanics/molecular mechanics (QM/MM) simulations, which incorporate automatically polarization effects, can help refine the structural determinants of ligand/RNA complexes in aqueous solution. In fact, recent advances in massively parallel computer architectures (such as exascale machines), combined with the power of machine learning, are greatly expanding the domain of applicability of these types of notoriously expensive simulations. We corroborate this proposal by carrying out a QM/MM-based study on a ligand targeting CAG repeat-RNA, involved in Huntington’s disease. The calculations indeed show a clear improvement in the ligand binding properties, and they are consistent with the NMR measurements, also performed here. Thus, this type of approach may be useful for practical applications in the design of ligands targeting RNA in the near future.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"62 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03456","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the binding poses of ligands targeting RNAs is challenging. Here, we propose that using first-principles quantum mechanics/molecular mechanics (QM/MM) simulations, which incorporate automatically polarization effects, can help refine the structural determinants of ligand/RNA complexes in aqueous solution. In fact, recent advances in massively parallel computer architectures (such as exascale machines), combined with the power of machine learning, are greatly expanding the domain of applicability of these types of notoriously expensive simulations. We corroborate this proposal by carrying out a QM/MM-based study on a ligand targeting CAG repeat-RNA, involved in Huntington’s disease. The calculations indeed show a clear improvement in the ligand binding properties, and they are consistent with the NMR measurements, also performed here. Thus, this type of approach may be useful for practical applications in the design of ligands targeting RNA in the near future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信