Grain selection growth of soft metal in electrochemical processes

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-04-16 DOI:10.1016/j.joule.2025.101847
Minghao Zhang , Karnpiwat Tantratian , So-Yeon Ham , Zhuo Wang , Mehdi Chouchane , Ryosuke Shimizu , Shuang Bai , Hedi Yang , Zhao Liu , Letian Li , Amir Avishai , Lei Chen , Ying Shirley Meng
{"title":"Grain selection growth of soft metal in electrochemical processes","authors":"Minghao Zhang ,&nbsp;Karnpiwat Tantratian ,&nbsp;So-Yeon Ham ,&nbsp;Zhuo Wang ,&nbsp;Mehdi Chouchane ,&nbsp;Ryosuke Shimizu ,&nbsp;Shuang Bai ,&nbsp;Hedi Yang ,&nbsp;Zhao Liu ,&nbsp;Letian Li ,&nbsp;Amir Avishai ,&nbsp;Lei Chen ,&nbsp;Ying Shirley Meng","doi":"10.1016/j.joule.2025.101847","DOIUrl":null,"url":null,"abstract":"<div><div>Soft metals like lithium and sodium play a critical role in battery technology owing to their high-energy density. Texture formation by grain selection growth of soft metals during electrochemical processes is a crucial factor affecting power and safety. Here, a general thermodynamic theory and phase-field model are formulated to study the grain selection growth of soft metals. Our study focuses on the interplay between surface energy and atomic mobility-related intrinsic strain energy in grain selection growth. Differences in grain selection growth arise from the anisotropy in surface energy and the diffusion barrier of soft metal atoms. Our findings highlight the kinetic limitations of solid-state Li metal batteries, which originate from load stress-induced surface energy anisotropy. These insights lead to the development of an amorphous Li<sub>x</sub>Si<sub>1−x</sub> (0.50 &lt; x &lt; 0.79) seed layer, improving the critical current density at room temperature for anode-free Li solid-state batteries through the control of grain selection growth.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 4","pages":"Article 101847"},"PeriodicalIF":38.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435125000285","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Soft metals like lithium and sodium play a critical role in battery technology owing to their high-energy density. Texture formation by grain selection growth of soft metals during electrochemical processes is a crucial factor affecting power and safety. Here, a general thermodynamic theory and phase-field model are formulated to study the grain selection growth of soft metals. Our study focuses on the interplay between surface energy and atomic mobility-related intrinsic strain energy in grain selection growth. Differences in grain selection growth arise from the anisotropy in surface energy and the diffusion barrier of soft metal atoms. Our findings highlight the kinetic limitations of solid-state Li metal batteries, which originate from load stress-induced surface energy anisotropy. These insights lead to the development of an amorphous LixSi1−x (0.50 < x < 0.79) seed layer, improving the critical current density at room temperature for anode-free Li solid-state batteries through the control of grain selection growth.

Abstract Image

Abstract Image

软金属在电化学过程中的晶粒选择生长
像锂和钠这样的软金属由于其高能量密度在电池技术中起着至关重要的作用。软金属在电化学过程中晶粒选择生长形成的织构是影响功率和安全性的关键因素。本文建立了研究软金属晶粒选择生长的一般热力学理论和相场模型。我们的研究重点是表面能与原子迁移率相关的本征应变能在晶粒选择生长中的相互作用。晶粒选择生长的差异是由表面能的各向异性和软金属原子的扩散势垒引起的。我们的研究结果强调了固态锂金属电池的动力学局限性,这源于负载应力引起的表面能各向异性。这些见解导致了无定形LixSi1−x (0.50 <;x & lt;0.79)种子层,通过控制晶粒选择生长来提高无阳极锂固态电池的室温临界电流密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信