Methane Adsorption Capacity of Deep Buried Coal Seam Based on Full-Scale Pore Structure

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Qian Zhang, Shuheng Tang, Songhang Zhang, Zhaodong Xi, Di Xin, Tengfei Jia, Xiongxiong Yang, Ke Zhang, Jianxin Li, Zhizhen Wang
{"title":"Methane Adsorption Capacity of Deep Buried Coal Seam Based on Full-Scale Pore Structure","authors":"Qian Zhang, Shuheng Tang, Songhang Zhang, Zhaodong Xi, Di Xin, Tengfei Jia, Xiongxiong Yang, Ke Zhang, Jianxin Li, Zhizhen Wang","doi":"10.1007/s11053-024-10454-x","DOIUrl":null,"url":null,"abstract":"<p>Coalbed methane primarily exists as adsorbed gas within the microscopic pores and fractures of coal. However, the complex pore structure of deep coal seams and its quantitative relationship with methane adsorption capacity remain unclear. This study investigated nine samples from a coal seam in the Ningwu Basin, representing different burial depths, including five middle-shallow and four deep burials. This was accomplished through a series of experiments, including high-pressure mercury injection (HPMI), low-temperature nitrogen adsorption (LTGA–N<sub>2</sub>), low-pressure carbon dioxide adsorption (LPGA–CO<sub>2</sub>), and high-pressure (30 MPa) methane isothermal adsorption (HPGA–CH<sub>4</sub>). The study revealed the characteristics of the pore structure in deep coal seams and their differences compared to those in middle-shallow coal seams. Moreover, it clarified the mechanism by which the pore structure influences CH<sub>4</sub> adsorption capacity. Given the differences in methane adsorption mechanisms at various pore scales, a novel method for quantitatively assessing the methane adsorption capacity using pore structure parameters is proposed. The results showed that the micropore pore volume and specific surface area of the deep coal seam were significantly higher than those of the middle-shallow coal seams. In contrast, the development of mesopores and macropores was relatively limited. The CH<sub>4</sub> adsorption capacity of a coal seam was calculated using pore structure parameters across multiple scales, considering the coexistence of two-dimensional “filling adsorption” and three-dimensional “monolayer adsorption” mechanisms. The calculated capacity<i> V</i><sub><i>L</i></sub>’ closely matched the measured value of <i>V</i><sub><i>L</i></sub>, with error of less than 10%. The degree of micropore development is the main factor influencing the accuracy of this method. Therefore, using pore structure parameters at different scales to calculate methane adsorption capacity is effective and feasible for deep coal seams with extensive micropore development. This study established a connection between microscopic pore structure and macroscopic methane adsorption capacity, offering a novel method to determine the methane adsorption capacity of deep coal seams.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"22 1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10454-x","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Coalbed methane primarily exists as adsorbed gas within the microscopic pores and fractures of coal. However, the complex pore structure of deep coal seams and its quantitative relationship with methane adsorption capacity remain unclear. This study investigated nine samples from a coal seam in the Ningwu Basin, representing different burial depths, including five middle-shallow and four deep burials. This was accomplished through a series of experiments, including high-pressure mercury injection (HPMI), low-temperature nitrogen adsorption (LTGA–N2), low-pressure carbon dioxide adsorption (LPGA–CO2), and high-pressure (30 MPa) methane isothermal adsorption (HPGA–CH4). The study revealed the characteristics of the pore structure in deep coal seams and their differences compared to those in middle-shallow coal seams. Moreover, it clarified the mechanism by which the pore structure influences CH4 adsorption capacity. Given the differences in methane adsorption mechanisms at various pore scales, a novel method for quantitatively assessing the methane adsorption capacity using pore structure parameters is proposed. The results showed that the micropore pore volume and specific surface area of the deep coal seam were significantly higher than those of the middle-shallow coal seams. In contrast, the development of mesopores and macropores was relatively limited. The CH4 adsorption capacity of a coal seam was calculated using pore structure parameters across multiple scales, considering the coexistence of two-dimensional “filling adsorption” and three-dimensional “monolayer adsorption” mechanisms. The calculated capacity VL’ closely matched the measured value of VL, with error of less than 10%. The degree of micropore development is the main factor influencing the accuracy of this method. Therefore, using pore structure parameters at different scales to calculate methane adsorption capacity is effective and feasible for deep coal seams with extensive micropore development. This study established a connection between microscopic pore structure and macroscopic methane adsorption capacity, offering a novel method to determine the methane adsorption capacity of deep coal seams.

基于全尺寸孔隙结构的深埋煤层甲烷吸附能力研究
煤层气主要以吸附气的形式存在于煤的微观孔隙和裂隙中。然而,深部煤层复杂的孔隙结构及其与甲烷吸附能力的定量关系尚不清楚。本研究选取了宁武盆地某煤层的9个样品,分别代表了不同的埋藏深度,包括5个中浅埋层和4个深埋层。通过高压压汞(HPMI)、低温氮气吸附(LTGA-N2)、低压二氧化碳吸附(LPGA-CO2)、高压(30 MPa)甲烷等温吸附(HPGA-CH4)等一系列实验来实现。研究揭示了深部煤层孔隙结构特征及其与中浅层煤层孔隙结构的差异。阐明了孔隙结构对CH4吸附能力的影响机理。针对不同孔隙尺度上甲烷吸附机理的差异,提出了一种利用孔隙结构参数定量评价甲烷吸附量的新方法。结果表明:深部煤层微孔孔隙体积和比表面积显著高于中浅层煤层;相比之下,中孔和大孔的发育相对有限。考虑二维“填充吸附”和三维“单层吸附”共存的情况下,采用多尺度孔隙结构参数计算煤层的CH4吸附量。计算容量VL '与VL实测值吻合较好,误差小于10%。微孔发育程度是影响该方法准确性的主要因素。因此,对于微孔发育广泛的深部煤层,利用不同尺度的孔隙结构参数计算甲烷吸附能力是有效可行的。该研究建立了微观孔隙结构与宏观甲烷吸附能力之间的联系,为确定深部煤层甲烷吸附能力提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信