STAT3-controlled CHI3L1/SPP1 positive feedback loop demonstrates the spatial heterogeneity and immune characteristics of glioblastoma

IF 10.7 1区 生物学 Q1 CELL BIOLOGY
Wanli Yu, Shikai Gui, Lunshan Peng, Haitao Luo, Jiabao Xie, Juexian Xiao, Yimuran ·Yilamu, Yi Sun, Shihao Cai, Zujue Cheng, Zhennan Tao
{"title":"STAT3-controlled CHI3L1/SPP1 positive feedback loop demonstrates the spatial heterogeneity and immune characteristics of glioblastoma","authors":"Wanli Yu, Shikai Gui, Lunshan Peng, Haitao Luo, Jiabao Xie, Juexian Xiao, Yimuran ·Yilamu, Yi Sun, Shihao Cai, Zujue Cheng, Zhennan Tao","doi":"10.1016/j.devcel.2025.01.014","DOIUrl":null,"url":null,"abstract":"Proneural-mesenchymal transition (PMT) is a phenotypic alteration and contributes to the malignant progression of glioblastoma (GBM). Macrophages, as a main infiltrating component of the tumor immune microenvironment (TIM), control the biological processes of PMT; however, the mechanisms driving this process remain largely unknown. Here, the overall landscape of tumor and nontumor cells was described by scMulti-omics technology. Then, we demonstrated that chitinase-3-like protein 1 (CHI3L1) played a critical role in maintaining mesenchymal (MES) status and reprogramming macrophage phenotype using C57BL/6 and NSG mice models derived from PN20 cells. Mechanistically, osteopontin (OPN)/ITGB1 maintained the activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways by establishing a positive feedback loop with the CHI3L1-STAT3 axis, resulting in PMT. CHI3L1 enhanced the phosphorylation, nuclear localization, and transcriptional activity of STAT3 via directly binding its coiled-coil domain (CCD). Importantly, we screened and validated that hygromycin B (HB), an inhibitor of the STAT3-CCD domain, disrupted the CHI3L1-STAT3 interaction, thereby reducing the tumor burden <em>in vitro</em> and <em>in vivo</em>.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"50 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.01.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proneural-mesenchymal transition (PMT) is a phenotypic alteration and contributes to the malignant progression of glioblastoma (GBM). Macrophages, as a main infiltrating component of the tumor immune microenvironment (TIM), control the biological processes of PMT; however, the mechanisms driving this process remain largely unknown. Here, the overall landscape of tumor and nontumor cells was described by scMulti-omics technology. Then, we demonstrated that chitinase-3-like protein 1 (CHI3L1) played a critical role in maintaining mesenchymal (MES) status and reprogramming macrophage phenotype using C57BL/6 and NSG mice models derived from PN20 cells. Mechanistically, osteopontin (OPN)/ITGB1 maintained the activation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways by establishing a positive feedback loop with the CHI3L1-STAT3 axis, resulting in PMT. CHI3L1 enhanced the phosphorylation, nuclear localization, and transcriptional activity of STAT3 via directly binding its coiled-coil domain (CCD). Importantly, we screened and validated that hygromycin B (HB), an inhibitor of the STAT3-CCD domain, disrupted the CHI3L1-STAT3 interaction, thereby reducing the tumor burden in vitro and in vivo.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信