Neil A. Gilbert, Graziella V. DiRenzo, Elise F. Zipkin
{"title":"Idiosyncratic spatial scaling of biodiversity–disease relationships","authors":"Neil A. Gilbert, Graziella V. DiRenzo, Elise F. Zipkin","doi":"10.1111/ecog.07541","DOIUrl":null,"url":null,"abstract":"High host biodiversity is hypothesized to dilute the risk of vector-borne diseases if many host species are ‘dead ends' that cannot effectively transmit the disease and low-diversity areas tend to be dominated by competent host species. However, many studies on biodiversity–disease relationships characterize host biodiversity at single, local spatial scales, which complicates efforts to forecast disease risk if associations between host biodiversity and disease change with spatial scale. Here, our objective is to evaluate the spatial scaling of relationships between host biodiversity and <i>Borrelia</i> (the bacterial taxon which causes Lyme disease) infection prevalence in small mammals. We compared the associations between infection prevalence and small mammal host diversity for local communities (individual plots) and metacommunities (multiple plots aggregated within a landscape) sampled by the National Ecological Observatory Network (NEON), an emerging continental-scale environmental monitoring program with a hierarchical sampling design. We applied a multispecies, spatially-stratified capture–recapture model to a trapping dataset to estimate five small mammal biodiversity metrics, which we used to predict infection status for a subset of trapped individuals. We found that relationships between <i>Borrelia</i> infection prevalence and biodiversity did indeed vary when biodiversity was quantified at different spatial scales but that these scaling behaviors were idiosyncratic among the five biodiversity metrics. For example, species richness of local communities showed a negative (dilution) effect on infection prevalence, while species richness of the small mammal metacommunity showed a positive (amplification) effect on infection prevalence. Our modeling approach can inform future analyses as data from similar monitoring programs accumulate and become increasingly available through time. Our results indicate that a focus on single spatial scales when assessing the influence of biodiversity on disease risk provides an incomplete picture of the complexity of disease dynamics in ecosystems.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07541","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
High host biodiversity is hypothesized to dilute the risk of vector-borne diseases if many host species are ‘dead ends' that cannot effectively transmit the disease and low-diversity areas tend to be dominated by competent host species. However, many studies on biodiversity–disease relationships characterize host biodiversity at single, local spatial scales, which complicates efforts to forecast disease risk if associations between host biodiversity and disease change with spatial scale. Here, our objective is to evaluate the spatial scaling of relationships between host biodiversity and Borrelia (the bacterial taxon which causes Lyme disease) infection prevalence in small mammals. We compared the associations between infection prevalence and small mammal host diversity for local communities (individual plots) and metacommunities (multiple plots aggregated within a landscape) sampled by the National Ecological Observatory Network (NEON), an emerging continental-scale environmental monitoring program with a hierarchical sampling design. We applied a multispecies, spatially-stratified capture–recapture model to a trapping dataset to estimate five small mammal biodiversity metrics, which we used to predict infection status for a subset of trapped individuals. We found that relationships between Borrelia infection prevalence and biodiversity did indeed vary when biodiversity was quantified at different spatial scales but that these scaling behaviors were idiosyncratic among the five biodiversity metrics. For example, species richness of local communities showed a negative (dilution) effect on infection prevalence, while species richness of the small mammal metacommunity showed a positive (amplification) effect on infection prevalence. Our modeling approach can inform future analyses as data from similar monitoring programs accumulate and become increasingly available through time. Our results indicate that a focus on single spatial scales when assessing the influence of biodiversity on disease risk provides an incomplete picture of the complexity of disease dynamics in ecosystems.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.