Soil microbial legacies and drought mediate diversity–invasibility relationships in non-native communities

IF 8.3 1区 生物学 Q1 PLANT SCIENCES
New Phytologist Pub Date : 2025-02-09 DOI:10.1111/nph.20462
Jiahui Yi, Zhibin Tao, Kaoping Zhang, Baoguo Nie, Evan Siemann, Wei Huang
{"title":"Soil microbial legacies and drought mediate diversity–invasibility relationships in non-native communities","authors":"Jiahui Yi, Zhibin Tao, Kaoping Zhang, Baoguo Nie, Evan Siemann, Wei Huang","doi":"10.1111/nph.20462","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>High native species diversity generally suppresses non-native invasions, but many ecosystems are now characterized by non-native assemblages that vary in species diversity. How this non-native species diversity affects subsequent invaders and its environmental dependence remain unclear.</li>\n<li>We conducted a plant–soil feedback experiment. In the conditioning phase, we created three diversity levels (1, 2, or 4 species) using six non-native species to condition the soil. In the responding phase, we planted these six species individually with soil inocula and exposed them to two watering treatments (well-watered vs drought).</li>\n<li>Under well-watered conditions, the non-native biomass increased with soil inocula generated by different non-native diversity. This biomass pattern was mainly related to arbuscular mycorrhizal fungal richness which increased with non-native species diversity. However, under drought conditions, the non-native biomass did not depend on soil inocula generated by non-native diversity.</li>\n<li>Our results reveal the crucial role of soil microbial legacies in driving the positive diversity–invasibility relationships of non-native communities and drought stress can eliminate these positive relationships. These findings provide an explanation for the commonly observed co-occurrence of multiple non-native species in nature, predicting an accelerating accumulation of non-native species in a benign environment, but not in a stressed environment.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"44 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20462","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

  • High native species diversity generally suppresses non-native invasions, but many ecosystems are now characterized by non-native assemblages that vary in species diversity. How this non-native species diversity affects subsequent invaders and its environmental dependence remain unclear.
  • We conducted a plant–soil feedback experiment. In the conditioning phase, we created three diversity levels (1, 2, or 4 species) using six non-native species to condition the soil. In the responding phase, we planted these six species individually with soil inocula and exposed them to two watering treatments (well-watered vs drought).
  • Under well-watered conditions, the non-native biomass increased with soil inocula generated by different non-native diversity. This biomass pattern was mainly related to arbuscular mycorrhizal fungal richness which increased with non-native species diversity. However, under drought conditions, the non-native biomass did not depend on soil inocula generated by non-native diversity.
  • Our results reveal the crucial role of soil microbial legacies in driving the positive diversity–invasibility relationships of non-native communities and drought stress can eliminate these positive relationships. These findings provide an explanation for the commonly observed co-occurrence of multiple non-native species in nature, predicting an accelerating accumulation of non-native species in a benign environment, but not in a stressed environment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信