E. Durgut, J. Tan, B. Smith, R. Dawson, J. Foster, F. Claeyssens
{"title":"Surfactant-Free ZIF-8 Decorated and Open Porous Pickering Polymerized High Internal Phase Emulsion","authors":"E. Durgut, J. Tan, B. Smith, R. Dawson, J. Foster, F. Claeyssens","doi":"10.1016/j.polymer.2025.128146","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOFs) represent an emerging class of porous materials with significant potential for various applications. However, their utilization in powder form poses challenges for industrial-scale applications. Consequently, there is active research in developing supporting materials for MOFs. This research article explores the effectiveness of loading MOFs, specifically ZIF-8, onto polymerized high internal phase emulsions (PolyHIPEs). ZIF-8 was used as a sole emulsion stabilizer, as well as in combination with polymeric colloidal particles and surfactant as co-stabilizers of the emulsion. The findings indicate that when ZIF-8 is used as the sole emulsion stabilizer, it leads to well-surface-decorated but closed pore PolyHIPEs. Combining ZIF-8 with IBOA microparticles as emulsion stabilizers results in similarly well-decorated but interconnected porous structures. While the commonly used apporach using MOFs (ZIF-8) together with a surfactant (Hypermer B246) produced an interconnected porous structure, the pores become poorly decorated with ZIF-8. This is attributed to an antagonistic effect between Hypermer B246 and ZIF-8. The study employed morphological investigations, SEM micrographs, thermogravimetric analysis, and energy-dispersive X-ray analysis to evaluate the ZIF-8 loading efficacy in PolyHIPEs.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"132 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2025.128146","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic frameworks (MOFs) represent an emerging class of porous materials with significant potential for various applications. However, their utilization in powder form poses challenges for industrial-scale applications. Consequently, there is active research in developing supporting materials for MOFs. This research article explores the effectiveness of loading MOFs, specifically ZIF-8, onto polymerized high internal phase emulsions (PolyHIPEs). ZIF-8 was used as a sole emulsion stabilizer, as well as in combination with polymeric colloidal particles and surfactant as co-stabilizers of the emulsion. The findings indicate that when ZIF-8 is used as the sole emulsion stabilizer, it leads to well-surface-decorated but closed pore PolyHIPEs. Combining ZIF-8 with IBOA microparticles as emulsion stabilizers results in similarly well-decorated but interconnected porous structures. While the commonly used apporach using MOFs (ZIF-8) together with a surfactant (Hypermer B246) produced an interconnected porous structure, the pores become poorly decorated with ZIF-8. This is attributed to an antagonistic effect between Hypermer B246 and ZIF-8. The study employed morphological investigations, SEM micrographs, thermogravimetric analysis, and energy-dispersive X-ray analysis to evaluate the ZIF-8 loading efficacy in PolyHIPEs.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.