Imaging flow cytometry with a real-time throughput beyond 1,000,000 events per second

IF 20.6 Q1 OPTICS
Jiehua Zhou, Liye Mei, Mingjie Yu, Xiao Ma, Dan Hou, Zhuo Yin, Xun Liu, Yan Ding, Kaining Yang, Ruidong Xiao, Xiandan Yuan, Yueyun Weng, Mengping Long, Taobo Hu, Jinxuan Hou, Yu Xu, Liang Tao, Sisi Mei, Hui Shen, Yaxiaer Yalikun, Fuling Zhou, Liang Wang, Du Wang, Sheng Liu, Cheng Lei
{"title":"Imaging flow cytometry with a real-time throughput beyond 1,000,000 events per second","authors":"Jiehua Zhou, Liye Mei, Mingjie Yu, Xiao Ma, Dan Hou, Zhuo Yin, Xun Liu, Yan Ding, Kaining Yang, Ruidong Xiao, Xiandan Yuan, Yueyun Weng, Mengping Long, Taobo Hu, Jinxuan Hou, Yu Xu, Liang Tao, Sisi Mei, Hui Shen, Yaxiaer Yalikun, Fuling Zhou, Liang Wang, Du Wang, Sheng Liu, Cheng Lei","doi":"10.1038/s41377-025-01754-9","DOIUrl":null,"url":null,"abstract":"<p>Imaging flow cytometry (IFC) combines the imaging capabilities of microscopy with the high throughput of flow cytometry, offering a promising solution for high-precision and high-throughput cell analysis in fields such as biomedicine, green energy, and environmental monitoring. However, due to limitations in imaging framerate and real-time data processing, the real-time throughput of existing IFC systems has been restricted to approximately 1000-10,000 events per second (eps), which is insufficient for large-scale cell analysis. In this work, we demonstrate IFC with real-time throughput exceeding 1,000,000 eps by integrating optical time-stretch (OTS) imaging, microfluidic-based cell manipulation, and online image processing. Cells flowing at speeds up to 15 m/s are clearly imaged with a spatial resolution of 780 nm, and images of each individual cell are captured, stored, and analyzed. The capabilities and performance of our system are validated through the identification of malignancies in clinical colorectal samples. This work sets a new record for throughput in imaging flow cytometry, and we believe it has the potential to revolutionize cell analysis by enabling highly efficient, accurate, and intelligent measurement.</p><figure></figure>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"41 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01754-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Imaging flow cytometry (IFC) combines the imaging capabilities of microscopy with the high throughput of flow cytometry, offering a promising solution for high-precision and high-throughput cell analysis in fields such as biomedicine, green energy, and environmental monitoring. However, due to limitations in imaging framerate and real-time data processing, the real-time throughput of existing IFC systems has been restricted to approximately 1000-10,000 events per second (eps), which is insufficient for large-scale cell analysis. In this work, we demonstrate IFC with real-time throughput exceeding 1,000,000 eps by integrating optical time-stretch (OTS) imaging, microfluidic-based cell manipulation, and online image processing. Cells flowing at speeds up to 15 m/s are clearly imaged with a spatial resolution of 780 nm, and images of each individual cell are captured, stored, and analyzed. The capabilities and performance of our system are validated through the identification of malignancies in clinical colorectal samples. This work sets a new record for throughput in imaging flow cytometry, and we believe it has the potential to revolutionize cell analysis by enabling highly efficient, accurate, and intelligent measurement.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信