A promising strategy for ocular noninvasive protein delivery: The case in treating corneal neovascularization

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Bangxun Mao , Bojiao Tang , Songping Yu , Jia Ying , Jing Wu , Lina Lan , Yanfang Wang , Xingjie Zan , Qinxiang Zheng , Jun Li
{"title":"A promising strategy for ocular noninvasive protein delivery: The case in treating corneal neovascularization","authors":"Bangxun Mao ,&nbsp;Bojiao Tang ,&nbsp;Songping Yu ,&nbsp;Jia Ying ,&nbsp;Jing Wu ,&nbsp;Lina Lan ,&nbsp;Yanfang Wang ,&nbsp;Xingjie Zan ,&nbsp;Qinxiang Zheng ,&nbsp;Jun Li","doi":"10.1016/j.actbio.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>Current clinical treatment of corneal neovascularization (CNV), a leading cause of visual impairment worldwide, by a class of glucocorticoids suffers from the ineffective and numerous adverse effects. Bevacizumab (Beva), an anti-neovascularization protein, is a promising therapeutic option but limited by subconjunctival injection due to its poor penetration across ocular bio-barriers, which significantly reduces patient compliance and increases the risk of infection. Herein, a CmA@Beva nanomedicine was developed, based on the co-assembly of novelly designed peptide, (Cysteine-Histidine-Arginine)3, with Beva in the presence of Zn<sup>2+</sup>. The conditions for the formation of CmA and encapsulation of Beva in CmA were optimized, and the pH-responsive release of Beva and the protective effects of CmA@Beva on Beva were explored. In vitro and in vivo studies showed CmA@Beva exhibited good biocompatibility and demonstrated notable improvements in Beva retention time in the anterior eye segment. CmA@Beva eye drops could overcome corneal bio-barriers by opening ocular surface tight junctions and the endocytosis-lysosomal escape pathway, which together resulted in a therapeutic outcome on rat CNV superior to subconjunctival injection. The present study contributes to the development of a noninvasive protein drug delivery strategy for the treatment of CNV or other diseases of the eye anterior segment.</div></div><div><h3>Statement of significance</h3><div>Corneal neovascularization (CNV) has been recognized as the leading cause of vision impairment globally, affecting approximately 1.4 million people each year. Protein drugs have shown high specificity and low side effect in disease treatment compared to small molecule drugs. However, limited ability to cross ocular barriers remain a big challenge. Here, a nanomedicine (CmA@Beva) was employed to address this issue through exampling on an anti-neovascularization protein, bevacizumab (Beva). CmA@Beva enhances retention on the ocular surface and effectively delivers Beva across the epithelial barrier, and thus is much more effective than the commonly used subconjunctival injections used for treatment in the clinic. This may be a good strategy for non-invasive delivery of protein drugs for the treatment of anterior segment diseases.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"196 ","pages":"Pages 307-320"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125000911","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current clinical treatment of corneal neovascularization (CNV), a leading cause of visual impairment worldwide, by a class of glucocorticoids suffers from the ineffective and numerous adverse effects. Bevacizumab (Beva), an anti-neovascularization protein, is a promising therapeutic option but limited by subconjunctival injection due to its poor penetration across ocular bio-barriers, which significantly reduces patient compliance and increases the risk of infection. Herein, a CmA@Beva nanomedicine was developed, based on the co-assembly of novelly designed peptide, (Cysteine-Histidine-Arginine)3, with Beva in the presence of Zn2+. The conditions for the formation of CmA and encapsulation of Beva in CmA were optimized, and the pH-responsive release of Beva and the protective effects of CmA@Beva on Beva were explored. In vitro and in vivo studies showed CmA@Beva exhibited good biocompatibility and demonstrated notable improvements in Beva retention time in the anterior eye segment. CmA@Beva eye drops could overcome corneal bio-barriers by opening ocular surface tight junctions and the endocytosis-lysosomal escape pathway, which together resulted in a therapeutic outcome on rat CNV superior to subconjunctival injection. The present study contributes to the development of a noninvasive protein drug delivery strategy for the treatment of CNV or other diseases of the eye anterior segment.

Statement of significance

Corneal neovascularization (CNV) has been recognized as the leading cause of vision impairment globally, affecting approximately 1.4 million people each year. Protein drugs have shown high specificity and low side effect in disease treatment compared to small molecule drugs. However, limited ability to cross ocular barriers remain a big challenge. Here, a nanomedicine (CmA@Beva) was employed to address this issue through exampling on an anti-neovascularization protein, bevacizumab (Beva). CmA@Beva enhances retention on the ocular surface and effectively delivers Beva across the epithelial barrier, and thus is much more effective than the commonly used subconjunctival injections used for treatment in the clinic. This may be a good strategy for non-invasive delivery of protein drugs for the treatment of anterior segment diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信