The miR-1305/KLF5 negative regulatory loop affects pancreatic cancer cell proliferation and apoptosis.

IF 3.4 3区 生物学 Q3 CELL BIOLOGY
Yufu Zhou, Yulin Tang, Feizhou Huang, Zhichao Wang, Zhengbin Wen, Qi Fang, Changfa Wang
{"title":"The miR-1305/KLF5 negative regulatory loop affects pancreatic cancer cell proliferation and apoptosis.","authors":"Yufu Zhou, Yulin Tang, Feizhou Huang, Zhichao Wang, Zhengbin Wen, Qi Fang, Changfa Wang","doi":"10.1007/s13577-025-01173-3","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer (PC) is characterized by a high relapse rate and unfavorable prognosis. Currently, the optimal treatment for PC is complete resection followed by adjuvant systemic chemotherapy. Nevertheless, tumor cell repopulation and subsequent tumor relapse and metastasis after chemotherapy result in a poor prognosis. Therefore, it is of great value to explore the potential molecular mechanisms underlying PC for developing novel treatment strategies. Herein, we aimed to investigate the potential regulatory mechanism of miR-1305 upon aerobic proliferation, metastasis, and apoptosis in PC. miR-1305 was downregulated in PC tissues and cell lines. miR-1305 overexpression prominently inhibited PC cell proliferation and metastasis promoted cell apoptosis in vitro, and alleviated PC formation in vivo. As predicted, KLF5 could directly bind to miR-1305. Silencing of KLF5 or KLF5 inhibitor (ML264) suppressed PC cell viability and cell invasion, and enhanced cell apoptosis. KLF5 restrained miR-1305 transcription and expression by binding to its promoter region. miR-1305 exerted a suppressive effect on PC cell proliferation and apoptosis via regulation of the KLF5-ERBB2 axis; KLF5 gene is a transcriptional regulator of miR-1305, promising to be a new target for the diagnosis and treatment of PC.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 2","pages":"51"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01173-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic cancer (PC) is characterized by a high relapse rate and unfavorable prognosis. Currently, the optimal treatment for PC is complete resection followed by adjuvant systemic chemotherapy. Nevertheless, tumor cell repopulation and subsequent tumor relapse and metastasis after chemotherapy result in a poor prognosis. Therefore, it is of great value to explore the potential molecular mechanisms underlying PC for developing novel treatment strategies. Herein, we aimed to investigate the potential regulatory mechanism of miR-1305 upon aerobic proliferation, metastasis, and apoptosis in PC. miR-1305 was downregulated in PC tissues and cell lines. miR-1305 overexpression prominently inhibited PC cell proliferation and metastasis promoted cell apoptosis in vitro, and alleviated PC formation in vivo. As predicted, KLF5 could directly bind to miR-1305. Silencing of KLF5 or KLF5 inhibitor (ML264) suppressed PC cell viability and cell invasion, and enhanced cell apoptosis. KLF5 restrained miR-1305 transcription and expression by binding to its promoter region. miR-1305 exerted a suppressive effect on PC cell proliferation and apoptosis via regulation of the KLF5-ERBB2 axis; KLF5 gene is a transcriptional regulator of miR-1305, promising to be a new target for the diagnosis and treatment of PC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Cell
Human Cell CELL BIOLOGY-
CiteScore
5.90
自引率
2.30%
发文量
176
审稿时长
4.5 months
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信