Protection acquired upon intraperitoneal group a Streptococcus immunization is independent of concurrent adaptive immune responses but relies on macrophages and IFN-γ.

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY
Virulence Pub Date : 2025-12-01 Epub Date: 2025-02-08 DOI:10.1080/21505594.2025.2457957
Shiva Emami, Elsa Westerlund, Thiago Rojas Converso, Bengt Johansson-Lindbom, Jenny J Persson
{"title":"Protection acquired upon intraperitoneal group a <i>Streptococcus</i> immunization is independent of concurrent adaptive immune responses but relies on macrophages and IFN-γ.","authors":"Shiva Emami, Elsa Westerlund, Thiago Rojas Converso, Bengt Johansson-Lindbom, Jenny J Persson","doi":"10.1080/21505594.2025.2457957","DOIUrl":null,"url":null,"abstract":"<p><p>Group A <i>Streptococcus</i> (GAS; <i>Streptococcus pyogenes</i>) is an important bacterial pathogen causing over 700 million superficial infections and around 500.000 deaths due to invasive disease or severe post-infection sequelae yearly. In spite of this major impact on society, there is currently no vaccine available against this bacterium. GAS strains can be separated into >250 distinct <i>emm</i> (M)-types, and protective immunity against GAS is believed to in part be dependent on type-specific antibodies. Here, we analyse the nature of protective immunity generated against GAS in a model of intraperitoneal immunization in mice. We demonstrate that multiple immunizations are required for the ability to survive a subsequent lethal challenge, and although significant levels of GAS-specific antibodies are produced, these are redundant for protection. Instead, our data show that the immunization-dependent protection in this model is induced in the absence of B and T cells and is accompanied by the induction of an altered acute cytokine profile upon subsequent infection, noticeable e.g. by the absence of classical pro-inflammatory cytokines and increased IFN-γ production. Further, the ability of immunized mice to survive a lethal infection is dependent on macrophages and the macrophage-activating cytokine IFN-γ. To our knowledge these findings are the first to suggest that GAS may have the ability to induce forms of trained innate immunity. Taken together, the current study proposes a novel role for the innate immune system in response to GAS infections that potentially could be leveraged for future development of effective vaccines.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2457957"},"PeriodicalIF":5.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2457957","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Group A Streptococcus (GAS; Streptococcus pyogenes) is an important bacterial pathogen causing over 700 million superficial infections and around 500.000 deaths due to invasive disease or severe post-infection sequelae yearly. In spite of this major impact on society, there is currently no vaccine available against this bacterium. GAS strains can be separated into >250 distinct emm (M)-types, and protective immunity against GAS is believed to in part be dependent on type-specific antibodies. Here, we analyse the nature of protective immunity generated against GAS in a model of intraperitoneal immunization in mice. We demonstrate that multiple immunizations are required for the ability to survive a subsequent lethal challenge, and although significant levels of GAS-specific antibodies are produced, these are redundant for protection. Instead, our data show that the immunization-dependent protection in this model is induced in the absence of B and T cells and is accompanied by the induction of an altered acute cytokine profile upon subsequent infection, noticeable e.g. by the absence of classical pro-inflammatory cytokines and increased IFN-γ production. Further, the ability of immunized mice to survive a lethal infection is dependent on macrophages and the macrophage-activating cytokine IFN-γ. To our knowledge these findings are the first to suggest that GAS may have the ability to induce forms of trained innate immunity. Taken together, the current study proposes a novel role for the innate immune system in response to GAS infections that potentially could be leveraged for future development of effective vaccines.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信