An ontology-based rare disease common data model harmonising international registries, FHIR, and Phenopackets.

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Adam S L Graefe, Miriam R Hübner, Filip Rehburg, Steffen Sander, Sophie A I Klopfenstein, Samer Alkarkoukly, Ana Grönke, Annic Weyersberg, Daniel Danis, Jana Zschüntzsch, Elisabeth F Nyoungui, Susanna Wiegand, Peter Kühnen, Peter N Robinson, Oya Beyan, Sylvia Thun
{"title":"An ontology-based rare disease common data model harmonising international registries, FHIR, and Phenopackets.","authors":"Adam S L Graefe, Miriam R Hübner, Filip Rehburg, Steffen Sander, Sophie A I Klopfenstein, Samer Alkarkoukly, Ana Grönke, Annic Weyersberg, Daniel Danis, Jana Zschüntzsch, Elisabeth F Nyoungui, Susanna Wiegand, Peter Kühnen, Peter N Robinson, Oya Beyan, Sylvia Thun","doi":"10.1038/s41597-025-04558-z","DOIUrl":null,"url":null,"abstract":"<p><p>Although rare diseases (RDs) affect over 260 million individuals worldwide, low data quality and scarcity challenge effective care and research. This work aims to harmonise the Common Data Set by European Rare Disease Registry Infrastructure, Health Level 7 Fast Healthcare Interoperability Base Resources, and the Global Alliance for Genomics and Health Phenopacket Schema into a novel rare disease common data model (RD-CDM), laying the foundation for developing international RD-CDMs aligned with these data standards. We developed a modular-based GitHub repository and documentation to account for flexibility, extensions and further development. Recommendations on the model's cardinalities are given, inviting further refinement and international collaboration. An ontology-based approach was selected to find a common denominator between the semantic and syntactic data standards. Our RD-CDM version 2.0.0 comprises 78 data elements, extending the ERDRI-CDS by 62 elements with previous versions implemented in four German university hospitals capturing real world data for development and evaluation. We identified three categories for evaluation: Medical Data Granularity, Clinical Reasoning and Medical Relevance, and Interoperability and Harmonisation.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"234"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04558-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although rare diseases (RDs) affect over 260 million individuals worldwide, low data quality and scarcity challenge effective care and research. This work aims to harmonise the Common Data Set by European Rare Disease Registry Infrastructure, Health Level 7 Fast Healthcare Interoperability Base Resources, and the Global Alliance for Genomics and Health Phenopacket Schema into a novel rare disease common data model (RD-CDM), laying the foundation for developing international RD-CDMs aligned with these data standards. We developed a modular-based GitHub repository and documentation to account for flexibility, extensions and further development. Recommendations on the model's cardinalities are given, inviting further refinement and international collaboration. An ontology-based approach was selected to find a common denominator between the semantic and syntactic data standards. Our RD-CDM version 2.0.0 comprises 78 data elements, extending the ERDRI-CDS by 62 elements with previous versions implemented in four German university hospitals capturing real world data for development and evaluation. We identified three categories for evaluation: Medical Data Granularity, Clinical Reasoning and Medical Relevance, and Interoperability and Harmonisation.

Abstract Image

Abstract Image

Abstract Image

基于本体的罕见病公共数据模型,协调国际注册、FHIR和表型包。
尽管罕见病影响到全世界2.6亿多人,但数据质量低和稀缺性对有效的护理和研究构成了挑战。这项工作旨在将欧洲罕见病注册基础设施、健康7级快速医疗互操作性基础资源和全球基因组学和健康表型包模式联盟的公共数据集协调成一个新的罕见病公共数据模型(RD-CDM),为开发符合这些数据标准的国际RD-CDM奠定基础。我们开发了一个基于模块化的GitHub存储库和文档,以考虑灵活性、扩展和进一步的开发。给出了关于模型基数的建议,邀请进一步改进和国际合作。选择了一种基于本体的方法来寻找语义和句法数据标准之间的公分母。我们的RD-CDM 2.0.0版本包含78个数据元素,将ERDRI-CDS扩展了62个元素,以前的版本在四所德国大学医院中实现,捕获用于开发和评估的真实世界数据。我们确定了三个评估类别:医疗数据粒度,临床推理和医疗相关性,以及互操作性和协调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信