Suppression of MdPRP6 enhances adaptation of apple plants to long-term drought.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Benzhou Zhao, Qianwei Liu, Lin Luo, Hui Zhou, Xiaoli Zhang, Fengwang Ma, Xiaoqing Gong
{"title":"Suppression of MdPRP6 enhances adaptation of apple plants to long-term drought.","authors":"Benzhou Zhao, Qianwei Liu, Lin Luo, Hui Zhou, Xiaoli Zhang, Fengwang Ma, Xiaoqing Gong","doi":"10.1111/ppl.70099","DOIUrl":null,"url":null,"abstract":"<p><p>Apples are one of the world's four most economically significant fruits, and drought stress is an important factor limiting the development of the global apple industry. Here, we demonstrate that a proline-rich protein (PRP), MdPRP6, is an important factor regulating the long-term drought adaptation of apple plants. Suppression of MdPRP6 in apple plants (MdPRP6-Ri) enhances their adaptation to long-term moderate drought conditions, as indicated by their significantly higher biomass and relative water content (RWC) compared with wild-type (WT) plants. Under drought stress, the net photosynthetic rate (Pn), intercellular CO<sub>2</sub> concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr) were higher, and photosystem II (PSII) damage was lower in MdPRP6-Ri plants than in WT plants. Suppression of MdPRP6 increased the activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), which reduced oxidative damage to apple leaves under drought stress. The stomatal openings of MdPRP6-Ri plants were larger than those of WT plants; the WUE<sub>I</sub> and WUE<sub>L</sub> were thus higher in MdPRP6-Ri plants than in WT plants under long-term moderate drought stress. We also found that suppression of MdPRP6 increased the wax content of the leaf epidermis, which limits water evaporation caused by non-stomatal factors under drought stress. In sum, our findings suggest that MdPRP6 negatively affects the long-term drought adaptation of apple plants, possibly by modulating both stomatal and non-stomatal water loss.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70099"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70099","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Apples are one of the world's four most economically significant fruits, and drought stress is an important factor limiting the development of the global apple industry. Here, we demonstrate that a proline-rich protein (PRP), MdPRP6, is an important factor regulating the long-term drought adaptation of apple plants. Suppression of MdPRP6 in apple plants (MdPRP6-Ri) enhances their adaptation to long-term moderate drought conditions, as indicated by their significantly higher biomass and relative water content (RWC) compared with wild-type (WT) plants. Under drought stress, the net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr) were higher, and photosystem II (PSII) damage was lower in MdPRP6-Ri plants than in WT plants. Suppression of MdPRP6 increased the activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), which reduced oxidative damage to apple leaves under drought stress. The stomatal openings of MdPRP6-Ri plants were larger than those of WT plants; the WUEI and WUEL were thus higher in MdPRP6-Ri plants than in WT plants under long-term moderate drought stress. We also found that suppression of MdPRP6 increased the wax content of the leaf epidermis, which limits water evaporation caused by non-stomatal factors under drought stress. In sum, our findings suggest that MdPRP6 negatively affects the long-term drought adaptation of apple plants, possibly by modulating both stomatal and non-stomatal water loss.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信