{"title":"A deep learning-driven multi-layered steganographic approach for enhanced data security.","authors":"Yousef Sanjalawe, Salam Al-E'mari, Salam Fraihat, Mosleh Abualhaj, Emran Alzubi","doi":"10.1038/s41598-025-89189-5","DOIUrl":null,"url":null,"abstract":"<p><p>In the digital era, ensuring data integrity, authenticity, and confidentiality is critical amid growing interconnectivity and evolving security threats. This paper addresses key limitations of traditional steganographic methods, such as limited payload capacity, susceptibility to detection, and lack of robustness against attacks. A novel multi-layered steganographic framework is proposed, integrating Huffman coding, Least Significant Bit (LSB) embedding, and a deep learning-based encoder-decoder to enhance imperceptibility, robustness, and security. Huffman coding compresses data and obfuscates statistical patterns, enabling efficient embedding within cover images. At the same time, the deep learning encoder adds layer of protection by concealing an image within another. Extensive evaluations using benchmark datasets, including Tiny ImageNet, COCO, and CelebA, demonstrate the approach's superior performance. Key contributions include achieving high visual fidelity with Structural Similarity Index Metrics (SSIM) consistently above 99%, robust data recovery with text recovery accuracy reaching 100% under standard conditions, and enhanced resistance to common attacks such as noise and compression. The proposed framework significantly improves robustness, security, and computational efficiency compared to traditional methods. By balancing imperceptibility and resilience, this paper advances secure communication and digital rights management, addressing modern challenges in data hiding through an innovative combination of compression, adaptive embedding, and deep learning techniques.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4761"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807153/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89189-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the digital era, ensuring data integrity, authenticity, and confidentiality is critical amid growing interconnectivity and evolving security threats. This paper addresses key limitations of traditional steganographic methods, such as limited payload capacity, susceptibility to detection, and lack of robustness against attacks. A novel multi-layered steganographic framework is proposed, integrating Huffman coding, Least Significant Bit (LSB) embedding, and a deep learning-based encoder-decoder to enhance imperceptibility, robustness, and security. Huffman coding compresses data and obfuscates statistical patterns, enabling efficient embedding within cover images. At the same time, the deep learning encoder adds layer of protection by concealing an image within another. Extensive evaluations using benchmark datasets, including Tiny ImageNet, COCO, and CelebA, demonstrate the approach's superior performance. Key contributions include achieving high visual fidelity with Structural Similarity Index Metrics (SSIM) consistently above 99%, robust data recovery with text recovery accuracy reaching 100% under standard conditions, and enhanced resistance to common attacks such as noise and compression. The proposed framework significantly improves robustness, security, and computational efficiency compared to traditional methods. By balancing imperceptibility and resilience, this paper advances secure communication and digital rights management, addressing modern challenges in data hiding through an innovative combination of compression, adaptive embedding, and deep learning techniques.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.