Dario Vrdoljak , Željko Dujić , Colin D. Hubbard , Geoff B. Coombs , Andrew T. Lovering , Ivan Drvis , Nikola Foretic , Joseph W. Duke
{"title":"Muscle oxygenation and local blood volume difference between intercostal and deltoid during dry static apnea in breath-hold divers","authors":"Dario Vrdoljak , Željko Dujić , Colin D. Hubbard , Geoff B. Coombs , Andrew T. Lovering , Ivan Drvis , Nikola Foretic , Joseph W. Duke","doi":"10.1016/j.resp.2025.104402","DOIUrl":null,"url":null,"abstract":"<div><div>During either a static or dynamic apnea, oxygen is delivered to vital organs, i.e., the brain and heart, and there is a compensatory reduction of oxygen consumption in peripheral tissues. Additionally, maximal apnea is characterised by the initial easy-going phase and subsequent struggle phase in which involuntary breathing movements appear. The aim of this study was to compare the oxygenation and local blood volume of one active (external intercostal) and one non-active (deltoid) muscle during maximal dry static apneas in breath-hold divers while supine. Thirteen breath-hold divers performed 3 preparatory apneas followed by 3 maximal apneas with 5 min of supine rest between each apnea. During all apneas (duration, 115–323 s; IBM, 7–35) muscle oxygenation and muscle blood volume change were measured via NIRS. The variables quantified were muscle oxygen saturation (SmO<sub>2</sub>) and total hemoglobin (tHb). We found that the decline in oxygen saturation was similar in external intercostals and deltoids, even though their physiological role during a breath-hold is different. However, the external intercostals re-saturated at a significantly higher rate following a maximal apnea than the deltoid muscle (p = 0.02). Also, during the apneas, there was a significantly different response between muscles, where external intercostals had an increase and deltoid a decrease in tHb (p = 0.01). These findings indicate that despite respiratory muscle activity resulting from IBMs during breath-holds external intercostal muscle re-oxygenation occurs faster than peripheral muscles which may allow for a faster return to normal breathing.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"335 ","pages":"Article 104402"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904825000138","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During either a static or dynamic apnea, oxygen is delivered to vital organs, i.e., the brain and heart, and there is a compensatory reduction of oxygen consumption in peripheral tissues. Additionally, maximal apnea is characterised by the initial easy-going phase and subsequent struggle phase in which involuntary breathing movements appear. The aim of this study was to compare the oxygenation and local blood volume of one active (external intercostal) and one non-active (deltoid) muscle during maximal dry static apneas in breath-hold divers while supine. Thirteen breath-hold divers performed 3 preparatory apneas followed by 3 maximal apneas with 5 min of supine rest between each apnea. During all apneas (duration, 115–323 s; IBM, 7–35) muscle oxygenation and muscle blood volume change were measured via NIRS. The variables quantified were muscle oxygen saturation (SmO2) and total hemoglobin (tHb). We found that the decline in oxygen saturation was similar in external intercostals and deltoids, even though their physiological role during a breath-hold is different. However, the external intercostals re-saturated at a significantly higher rate following a maximal apnea than the deltoid muscle (p = 0.02). Also, during the apneas, there was a significantly different response between muscles, where external intercostals had an increase and deltoid a decrease in tHb (p = 0.01). These findings indicate that despite respiratory muscle activity resulting from IBMs during breath-holds external intercostal muscle re-oxygenation occurs faster than peripheral muscles which may allow for a faster return to normal breathing.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.