Chloe Wong, Jun Yan Ng, Yang Yie Sio, Fook Tim Chew
{"title":"Genetic determinants of skin ageing: a systematic review and meta-analysis of genome-wide association studies and candidate genes.","authors":"Chloe Wong, Jun Yan Ng, Yang Yie Sio, Fook Tim Chew","doi":"10.1186/s40101-025-00384-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Skin ageing is influenced by complex genetic factors. Various phenotypes such as wrinkling, pigmentation changes, and skin cancers have been linked to specific genetic loci. However, the underlying genetic mechanisms and pathways remain poorly understood. This systematic review and meta-analysis aims to summarise the genetic loci found to be associated with skin ageing phenotypes by published genome-wide association studies (GWAS) and candidate gene studies. We also evaluated the overall association of loci via meta-analysis and identified the association patterns to explore potential biological pathways contributing to skin ageing. The Web of Science, Embase, and PubMed databases were searched on January 2024 using specific exclusion criteria (e.g., study of non-human subjects, focus on skin diseases, or treatments) to identify relevant articles. There did not appear to be any significant publication bias observed across the all phenotypes.</p><p><strong>Main body: </strong>A total of 48 studies were included, revealing 30 loci that were confirmed to be associated with skin ageing by multiple studies (e.g., AFG3L1P: odds ratio 1.133 95% confidence interval [1.044, 1.222]; BPIFA3: 1.859 [1.567, 2.151]; CLPTML1: 1.164 [1.0.99, 1.229]; CPNE7: 0.905 [0.852-0.958]; DEF8: 1.186 [1.042, 1.331]; IRF4: 1.260 [1.025, 1.495]; MYO16: 2.303 [1.697, 2.908]; PRDM16: 1.105 [1.084, 1.127]; RORA: 1.391 [1.206, 1.577]; SPG7: 0.922 [0.897, 0.947]; SPON1: 2.214 [1.204, 3.225]; SPTLC1: 1.464 [1.432, 1.495]; TYR: 1.175 [1.007, 1.343]). The lack of significance for many loci may be due to studies analysing different SNPs within the same locus, weakening the overall associations. Several loci were associated with specific phenotypic categories (e.g., skin colour related, skin cancer related, wrinkling and sagging related), suggesting shared biological pathways are involved in the pathogenesis of different skin ageing phenotypes. This pattern was also observed in several of the loci that do not have a significant overall association with skin ageing.</p><p><strong>Conclusion: </strong>Despite significant heterogeneity among the included studies and the use of subjective visual methods for phenotype assessment, our review highlights the critical role of fundamental biological processes, such as development and cellular organisation, in skin ageing. Future research that targets the same SNP across multiple populations could strengthen the association of additional loci with skin ageing. Further investigation into these underlying biological processes would significantly advance our understanding of the pathogenesis of skin ageing phenotypes.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"44 1","pages":"4"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806588/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Anthropology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40101-025-00384-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Skin ageing is influenced by complex genetic factors. Various phenotypes such as wrinkling, pigmentation changes, and skin cancers have been linked to specific genetic loci. However, the underlying genetic mechanisms and pathways remain poorly understood. This systematic review and meta-analysis aims to summarise the genetic loci found to be associated with skin ageing phenotypes by published genome-wide association studies (GWAS) and candidate gene studies. We also evaluated the overall association of loci via meta-analysis and identified the association patterns to explore potential biological pathways contributing to skin ageing. The Web of Science, Embase, and PubMed databases were searched on January 2024 using specific exclusion criteria (e.g., study of non-human subjects, focus on skin diseases, or treatments) to identify relevant articles. There did not appear to be any significant publication bias observed across the all phenotypes.
Main body: A total of 48 studies were included, revealing 30 loci that were confirmed to be associated with skin ageing by multiple studies (e.g., AFG3L1P: odds ratio 1.133 95% confidence interval [1.044, 1.222]; BPIFA3: 1.859 [1.567, 2.151]; CLPTML1: 1.164 [1.0.99, 1.229]; CPNE7: 0.905 [0.852-0.958]; DEF8: 1.186 [1.042, 1.331]; IRF4: 1.260 [1.025, 1.495]; MYO16: 2.303 [1.697, 2.908]; PRDM16: 1.105 [1.084, 1.127]; RORA: 1.391 [1.206, 1.577]; SPG7: 0.922 [0.897, 0.947]; SPON1: 2.214 [1.204, 3.225]; SPTLC1: 1.464 [1.432, 1.495]; TYR: 1.175 [1.007, 1.343]). The lack of significance for many loci may be due to studies analysing different SNPs within the same locus, weakening the overall associations. Several loci were associated with specific phenotypic categories (e.g., skin colour related, skin cancer related, wrinkling and sagging related), suggesting shared biological pathways are involved in the pathogenesis of different skin ageing phenotypes. This pattern was also observed in several of the loci that do not have a significant overall association with skin ageing.
Conclusion: Despite significant heterogeneity among the included studies and the use of subjective visual methods for phenotype assessment, our review highlights the critical role of fundamental biological processes, such as development and cellular organisation, in skin ageing. Future research that targets the same SNP across multiple populations could strengthen the association of additional loci with skin ageing. Further investigation into these underlying biological processes would significantly advance our understanding of the pathogenesis of skin ageing phenotypes.
期刊介绍:
Journal of Physiological Anthropology (JPA) is an open access, peer-reviewed journal that publishes research on the physiological functions of modern mankind, with an emphasis on the physical and bio-cultural effects on human adaptability to the current environment.
The objective of JPA is to evaluate physiological adaptations to modern living environments, and to publish research from different scientific fields concerned with environmental impact on human life.
Topic areas include, but are not limited to:
environmental physiology
bio-cultural environment
living environment
epigenetic adaptation
development and growth
age and sex differences
nutrition and morphology
physical fitness and health
Journal of Physiological Anthropology is the official journal of the Japan Society of Physiological Anthropology.