Machine learning models for segmentation and classification of cyanobacterial cells.

IF 2.9 3区 生物学 Q2 PLANT SCIENCES
Clair A Huffine, Zachary L Maas, Anton Avramov, Christian M Brininger, Jeffrey C Cameron, Jian Wei Tay
{"title":"Machine learning models for segmentation and classification of cyanobacterial cells.","authors":"Clair A Huffine, Zachary L Maas, Anton Avramov, Christian M Brininger, Jeffrey C Cameron, Jian Wei Tay","doi":"10.1007/s11120-025-01140-x","DOIUrl":null,"url":null,"abstract":"<p><p>Timelapse microscopy has recently been employed to study the metabolism and physiology of cyanobacteria at the single-cell level. However, the identification of individual cells in brightfield images remains a significant challenge. Traditional intensity-based segmentation algorithms perform poorly when identifying individual cells in dense colonies due to a lack of contrast between neighboring cells. Here, we describe a newly developed software package called Cypose which uses machine learning (ML) models to solve two specific tasks: segmentation of individual cyanobacterial cells, and classification of cellular phenotypes. The segmentation models are based on the Cellpose framework, while classification is performed using a convolutional neural network named Cyclass. To our knowledge, these are the first developed ML-based models for cyanobacteria segmentation and classification. When compared to other methods, our segmentation models showed improved performance and were able to segment cells with varied morphological phenotypes, as well as differentiate between live and lysed cells. We also found that our models were robust to imaging artifacts, such as dust and cell debris. Additionally, the classification model was able to identify different cellular phenotypes using only images as input. Together, these models improve cell segmentation accuracy and enable high-throughput analysis of dense cyanobacterial colonies and filamentous cyanobacteria.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"16"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-025-01140-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Timelapse microscopy has recently been employed to study the metabolism and physiology of cyanobacteria at the single-cell level. However, the identification of individual cells in brightfield images remains a significant challenge. Traditional intensity-based segmentation algorithms perform poorly when identifying individual cells in dense colonies due to a lack of contrast between neighboring cells. Here, we describe a newly developed software package called Cypose which uses machine learning (ML) models to solve two specific tasks: segmentation of individual cyanobacterial cells, and classification of cellular phenotypes. The segmentation models are based on the Cellpose framework, while classification is performed using a convolutional neural network named Cyclass. To our knowledge, these are the first developed ML-based models for cyanobacteria segmentation and classification. When compared to other methods, our segmentation models showed improved performance and were able to segment cells with varied morphological phenotypes, as well as differentiate between live and lysed cells. We also found that our models were robust to imaging artifacts, such as dust and cell debris. Additionally, the classification model was able to identify different cellular phenotypes using only images as input. Together, these models improve cell segmentation accuracy and enable high-throughput analysis of dense cyanobacterial colonies and filamentous cyanobacteria.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Photosynthesis Research
Photosynthesis Research 生物-植物科学
CiteScore
6.90
自引率
8.10%
发文量
91
审稿时长
4.5 months
期刊介绍: Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信