Ines Drenjančević, Ivana Jukić, Vedran Đambić, Ana Stupin, Nataša Kozina, Anita Matić, Petar Šušnjara, Aleksandar Kibel, Darko Biljan, Zrinka Mihaljević
{"title":"Variability in flow-induced vasodilation mechanisms in cerebral arteries: the impact of different hyperbaric oxygen protocols.","authors":"Ines Drenjančević, Ivana Jukić, Vedran Đambić, Ana Stupin, Nataša Kozina, Anita Matić, Petar Šušnjara, Aleksandar Kibel, Darko Biljan, Zrinka Mihaljević","doi":"10.4103/mgr.MEDGASRES-D-24-00091","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to assess the mechanisms of flow-induced dilation (FID) altered by acute/intermittent hyperbaric oxygenation (HBO 2 ) in isolated middle cerebral arteries of healthy male Sprague‒Dawley rats ( n = 96) and randomized to the Ac-HBO 2 group (exposed to a single HBO 2 session, 120 minutes of 100% O 2 at 2.0 bars), the 4Dys-HBO 2 group (4 consecutive days of single HBO 2 sessions, analyzed on the fifth day), and the CTRL (untreated) group. Results demonstrated increased vascular oxidative stress and decreased vascular nitric oxide bioavailability, as measured by direct fluorescence microscopy, leading to attenuated FID in the Ac-HBO 2 group compared with the CTRL and 4Dys-HBO 2 groups. Superoxide scavenging restored FID. Moreover, the increased expression of antioxidative enzymes in the cerebral vasculature in the 4Dys-HBO 2 group indicates the ability of intermittent HBO 2 to activate antioxidative mechanisms. Importantly, the results suggest a switch or at least activation of the compensatory mechanism of FID after HBO 2 from nitric oxide-dependent to epoxygenase metabolite-mediated via TRPV4 (transient receptor potential cation channel subfamily V member 4) and potassium channels, as demonstrated by increased protein expression of KCNMB1 (potassium calcium-activated channel subfamily M regulatory beta subunit 1), TRPV4, and Kir2 (a component of the inward rectifier-type potassium channel Kir2) in the vasculature. Overall, acute HBO 2 modulates FID in cerebral vessels by increasing oxidative stress and altering the subsequent mechanisms of FID, which are mainly mediated by nitric oxide, while suppressing potassium and TRPV4 channel function/expression due to increased oxidative stress. Moreover, intermittent HBO 2 activates antioxidative mechanisms and the compensatory mechanism of FID from nitric oxide-dependent to epoxygenase metabolite-mediated mechanisms via TRPV4, KCNMB1 and Kir2.1.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":" ","pages":"383-390"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aimed to assess the mechanisms of flow-induced dilation (FID) altered by acute/intermittent hyperbaric oxygenation (HBO 2 ) in isolated middle cerebral arteries of healthy male Sprague‒Dawley rats ( n = 96) and randomized to the Ac-HBO 2 group (exposed to a single HBO 2 session, 120 minutes of 100% O 2 at 2.0 bars), the 4Dys-HBO 2 group (4 consecutive days of single HBO 2 sessions, analyzed on the fifth day), and the CTRL (untreated) group. Results demonstrated increased vascular oxidative stress and decreased vascular nitric oxide bioavailability, as measured by direct fluorescence microscopy, leading to attenuated FID in the Ac-HBO 2 group compared with the CTRL and 4Dys-HBO 2 groups. Superoxide scavenging restored FID. Moreover, the increased expression of antioxidative enzymes in the cerebral vasculature in the 4Dys-HBO 2 group indicates the ability of intermittent HBO 2 to activate antioxidative mechanisms. Importantly, the results suggest a switch or at least activation of the compensatory mechanism of FID after HBO 2 from nitric oxide-dependent to epoxygenase metabolite-mediated via TRPV4 (transient receptor potential cation channel subfamily V member 4) and potassium channels, as demonstrated by increased protein expression of KCNMB1 (potassium calcium-activated channel subfamily M regulatory beta subunit 1), TRPV4, and Kir2 (a component of the inward rectifier-type potassium channel Kir2) in the vasculature. Overall, acute HBO 2 modulates FID in cerebral vessels by increasing oxidative stress and altering the subsequent mechanisms of FID, which are mainly mediated by nitric oxide, while suppressing potassium and TRPV4 channel function/expression due to increased oxidative stress. Moreover, intermittent HBO 2 activates antioxidative mechanisms and the compensatory mechanism of FID from nitric oxide-dependent to epoxygenase metabolite-mediated mechanisms via TRPV4, KCNMB1 and Kir2.1.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.